首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lithium metal anode with high theoretical capacity is considered to be one of the most potential anode materials of the next generation. However, the growth of lithium dendrite seriously affects the application of lithium metal anode and the development of lithium metal batteries (LMBs). Herein, an ultrathin Li3N film modified separator to homogenize the lithium ions and protect the lithium metal anode was reported. Due to the intrinsic properties of Li3N, the functional separator possessed good thermal stability, mechanical properties and electrolyte wettability, and the homogenization of the lithium ion was realized without increasing the interface impedance. With this functional separator, the Li/Li symmetrical cell could achieve a long cycle with low overpotential for 1000 ​h at a current density of 1 ​mA ​cm−2. Furthermore, when the full battery was assembled with LiFePO4 and the discharge capacity could be maintained at 151 mAh g−1 after 400 cycles at 1 ​C. In addition, the full battery also showed good rate performance, and provided a high discharge capacity of 114 mAh g−1 at 5 ​C.  相似文献   

2.
The manganese sulfide (MnS) has attracted more attention as anode material on energy storage and conversion field, owing to its high theoretical capacity (616 ​mA ​h ​g−1) and good electrochemical activity. However, low electronic conductivity and large volume expansion during charge-discharge processes have limited its further application. In order to address above mentioned problems, the composites, MnS nanoparticles embedded in N,S-codoped porous carbon skeleton (named as MnS/N,S–C composites), herein have been prepared successfully using metal organic framework (Mn-NTA) as template. The porous carbon skeleton not only can enhance electrode conductivity, but also relieve volume expansion during charge-discharge processes. Thus, the rational design towards electrode architectures has endowed MnS/N,S–C nanocomposites with superior electrochemical performance, which delivers the specific capacities of 676.7 ​mA ​h ​g−1 at the current density of 100 ​mA ​g−1.  相似文献   

3.
High-capacity anode materials have stimulated much attention to developing high-performance lithium-ion batteries. However, high-capacity anode materials commonly suffer from the pulverization matter that greatly hinders their practical applications, especially in terms of the high proportion of active materials. In this work, a Ga2O3nanowire electrode is synthesized by thermal evaporation and immediately used as an anode without the aid of binders and conductive additives....  相似文献   

4.
Recently, the introduction of external fields(light, thermal, magnetism, etc.) during electrocatalysis reactions gradually becomes a new strategy to modulate the catalytic activities. In this work, an external magnetic field was innovatively employed for the synthesis progress of(Ni, Zn)Fe2O4spinel oxide(M-(Ni, Zn)Fe2O4). Results indicated the magnetic field(≤250 m T) would affect the morphology of catalyst due to the existing Fe ions, inducing the M-(...  相似文献   

5.
通过简单的石墨相氮化碳(g-C3N4)纳米片自组装沉积法,制备了g-C3N4包裹的SnO2-TiO2纳米复合材料.扫描电子显微镜观察显示,g-C3N4均匀地包裹在SnO2-TiO2纳米颗粒上.SnO2-TiO2-C3N4纳米复合材料被用作锂离子电池的负极材料,在0.2C的倍率下循环20次后,比容量达到380.2 mA·h·g-1,明显高于未经g-C3N4包裹的纯的SnO2(51.6 mA·h·g-1)和SnO2-TiO2纳米复合材料.在0.1~0.5C的倍率充放电测试中,SnO2-TiO2-C3N4纳米复合材料的比容量仅从490 mA·h·g-1衰减到330 mA·h·g-1,高倍率下抗衰减性能优于同类材料.材料优异的电化学性能归功于g-C3N4的包裹处理,这不仅增强了固体电解质界面(SEI)的稳定性,也抑制了锂离子嵌入-脱出时SnO2和TiO2纳米颗粒的体积变化.  相似文献   

6.
Transition metal phosphides have been recognized as promising electrocatalysts for oxygen evolution reaction(OER) due to their low cost and high activity. However, the insufficient exposed active region limited the OER performance. Recently, the introduction of sacrificial dopants has been considered an effective strategy to enlarge the surface area. Herein, the Zn dopants are introduced in NiFe phosphide(NiFeZnP) nanosheet, which work as the sacrificial dopants to generate more exposed active N...  相似文献   

7.
通过简单的固相法和液相法,分别制备出石墨相氮化碳(g-C3N4)表面改性的商品化LiCoO2复合材料,采用扫描电子显微镜观察改性后的材料,发现g-C3N4都均匀地包裹在LiCoO2表面。两种g-C3N4-LiCoO2复合材料被用作锂离子电池的正极材料,电化学测试结果显示,固相法制得的g-C3N4-LiCoO2复合材料在0.2 C的倍率下充放电测试,首次比容量达167 mA·h·g-1,循环80次后,比容量仍达132 mA·h·g-1,高于未经g-C3N4包裹的纯LiCoO2(98 mA·h·g-1);液相法制得的Y-C3N4-LiCoO2复合材料循环稳定性明显优于同类材料,循环80次后容量保持率均在95%以上。试验证实,g-C3N4表面改性的策略具有一定的实用价值,改性后,材料优异的电化学性能归因于g-C3N4的包裹处理,这不仅增强了固体电解质界面(SEI)的稳定性,也抑制了锂离子嵌入/脱出电极材料时引起LiCoO2体积的变化。  相似文献   

8.
Designing highly active and durable oxygen reduction reaction (ORR) electrocatalysts is essential for developing efficient proton-exchange membrane fuel cells (PEMFCs). In this work, ordered PtCuNi/C nanoparticles (NPs) were synthesized using an impregnation reduction method. This study shows that the incorporation of Ni in ordered PtCu/C can effectively adjust the electronic structure of Pt, thereby optimizing oxygen binding energy for the ORR. The obtained intermetallic ordered PtCuNi/C NPs significantly improved ORR activity and durability compared to ordered PtCu/C. Specifically, PtCu0·5Ni0·5/C-700 shows a mass activity of 1.29 ​A ​mg Pt−1 ​at 0.9 ​V vs. reversible hydrogen electrode (RHE), which is about 9.2 times higher than that of commercial Pt/C. PtCu0.5Ni0.5/C-700 is also shown to be competent cathode catalyst for a single-cell system exhibiting high power density (461 ​mW ​cm−2). This work demonstrates that ordered PtCu0·5Ni0·5/C-700 can be used as a highly active and durable ORR catalyst in PEMFCs.  相似文献   

9.
近年来,锂离子电池被广泛地应用于便携式电子设备和手机,并且对于诸如电动汽车等更高要求的应用而言具有巨大的潜力。作为锂离子电池负极材料,Fe2O3是最有可能替代石墨的过渡金属氧化物之一。因其具有高的理论比容量(1 007 mA·h·g-1)、储量丰富、安全性能好、无毒、环境友好和成本低等一系列优点,被广泛应用于气体传感器、催化和锂离子电池电极材料等领域,是一种具有巨大潜力的电极材料。介绍了锂离子电池的基本结构组成和工作原理,综述了Fe2O3的储锂机制和制备方法,总结了近年来Fe2O3以及它的复合物作为锂离子电池负极材料的研究进展。  相似文献   

10.
The increasing demand for portable and flexible energy storage devices drives the development of flexible electrodes and electrolytes. The aim of this work is to fabricate the flexible free-standing polyaniline/poly (vinyl alcohol) (PANI/PVA) composite electrode with good capacitance performance and shape memory behavior. The electrodes were fabricated by chemical oxidation polymerization of aniline in porous PVA (P-PVA) films. The morphology, electrochemical and mechanical properties of PANI/P-PVA electrodes were studied by scanning electron microscope, cyclic voltammetry, galvanostatic charge-discharge, and tensile test etc. The results revealed that the flexible PANI/P-PVA-1 electrode had good specific capacitance of 173.86 ​mF ​cm−2 at 1 ​mA ​cm−2, with the capacitance retention of 70.16% after 4000 charge-discharge cycles. Besides, it had excellent heat-induced shape memory effect. The fixed shape could completely recover to its original shape within 10 ​s at 80 ​°C, which is above the glass transition temperature (75.89 ​°C) of PANI/P-PVA-1. The comparatively tensile strength (2.86 ​MPa) and high elongation at break (315.72%) indicated its outstanding flexibility. Up to 200 times folding had no effect on the electrochemical properties. The free-standing polymer electrodes with excellent comprehensive performance provide potential applications in flexible energy-storage devices, electronic encapsulation and high stretchable electric devices etc.  相似文献   

11.
FeCo-based non-noble metal electrocatalysts (NNMEs) of FeCo/MCS-NPCS was fabricated by immobilization of hemin on mesoporous carbon shells modified N-doped porous carbon spheres (MCS-NPCS). The obtained FeCo/MCS-NPCS exhibits a half-wave potential (E1/2) of 0.851 ​V versus the reversible hydrogen electrode (vs. RHE) and a limited-diffusion current density (JL) of 5.45 ​mA ​cm−2. In addition, FeCo/MCS-NPCS shows comparable oxygen reduction reaction (ORR) performances to 20 ​wt% Pt/C in terms of E1/2 and JL and better electrochemical properties, including the methanol tolerance and durability in alkaline solution. Such outstanding electrochemical activities of FeCo/MCS-NPCS can be ascribed to Fe and/or Co-based nitrides and carbides as well as N-doped carbon matrixes modified with mesoporous carbon shells. This research introduces a promising path to design and synthesize highly efficient FeCo–N–C electrocatalysts towards ORR.  相似文献   

12.
It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the commercialization of fuel cell technology. To achieve this target, we report a one-step doping method to prepare S-doped Fe–N–C catalysts using zeolite imidazole framework (ZIF-8) and iron (III) thiocyanate (Fe(SCN)3) as precursor. Different from conventional doping approach, i.e. physical mixing, Fe(SCN)3 is in-situ added during ZIF-8 formation which would encapsulate Fe(SCN)3 molecules inside ZIF-8 to avoid structure destruction and create potential replacement of Zn ions by Fe ions to form uniform Fe–N4 complexes. As a result, the prepared S-doped Fe–N–C catalysts own large specific surface areas with a maximum value of 1326 ​m2 ​g−1 and a dual-scale porous structure that benefits mass transport. Significantly, the composition-optimized catalyst exhibits superior ORR activity in both 0.1 ​M HClO4 electrolyte and 0.1 ​M KOH electrolyte, in which the half-wave potential reaches 0.81 ​V and 0.92 ​V (vs. RHE), respectively. Remarkable stability is also attained, which loses 2 ​mV only after 10000 potential cycles in O2-saturated 0.1 ​M HClO4 and remains almost constant in O2-saturated 0.1 ​M KOH, surpassing commercial Pt/C catalyst in both acidic and alkaline medium.  相似文献   

13.
Sn anode materials with high specific capacity are an appealing alternative to graphite for next-generation advanced lithium-ion batteries. However, poor electrochemical performance originating from fracture and pulverization due to the enormous volume changes during lithium alloying/dealloying hinders their commercial applications. Here, we propose the synthesis of a novel 3D structured Sn anode material by a facile method: heat treatment of nanosized SnO2 spheres in a tube furnace with a flowing mixed atmosphere of C2H2/Ar at 400 °C. After the heat treatment, the nanosized SnO2 spheres convert into pure Sn bulk material (~20 μm), which consists of Sn nanowires (~50 nm in diameter and several microns in length). This unique 3D structure with sufficient voids between the nanowires effectively mitigates the volume expansion of Sn bulk material and ensures good electrical contact between the anode material and conducting additives. As a consequence, the 3D structured Sn anode material exhibits a specific reversible capacity of ~600 mA h/g and no significant capacity degradation (compared with that of the 20th cycle) over 500 cycles at 0.2 C.  相似文献   

14.
Fe-and Al-based thin-film metallic glass coatings (Fe44Al34Ti7N15 and Al61Ti11N28) were fabricated using magnetron co-sputtering technique, and their corrosion performances compared against wrought 316L stainless steel. The results of GI-XRD and XPS analyses demonstrated amorphous structure and oxide layer formation on the surface of the fabricated thin films, respectively. The potentiodynamic (PD) polarization test in chloride-thiosulfate (NH4Cl ​+ ​Na2S2O3) solution revealed lower corrosion current (Icorr) (0.42 ​± ​0.02 ​μA/cm2 and 0.086 ​± ​0.001 ​μA/cm2 Vs. 0.76 ​± ​0.05 ​μA/cm2), lower passivation current (Ipass) (1.45 ​± ​0.03 ​μA/cm2 and 1.83 ​± ​0.07 ​μA/cm2 Vs. 1.98 ​± ​0.04 ​μA/cm2), and approximately six-fold higher breakdown potential (Ebd) for Fe- and Al-based coatings than those of wrought 316L stainless steel. Electrochemical Impedance Spectroscopy (EIS) of both films showed 4- and 2-fold higher charge transfer resistance (Rct), 7- and 2.5-times higher film resistance (Rf), lower film capacitance values (Qf) (10 ​± ​2.4 ​μS-sacm-2, and 5.41 ​± ​0.8 ​μS-sacm-2 Vs. 18 ​± ​2.21 ​μS-sacm-2), and lower double-layer capacitance values (Qdl) (31.33 ​± ​4.74 ​μS-sacm-2, and 15.3 ​± ​0.48 ​μS-sacm-2 Vs. 43 ​± ​4.23 ​μS-sacm-2), indicating higher corrosion resistance of the thin films. Cyclic Voltammetry (CV) scan exhibited that the passive films formed on the Fe- and Al-based coatings were more stable and less prone to pitting corrosion than the wrought 316L stainless steel. The surface morphology of both films via SEM endorsed the CV scan results, showing better resistance to pitting corrosion. Furthermore, the thermal analysis via TGA and DSC revealed the excellent thermal stability of the thin films over a wide temperature range typically observed in oil-gas industries.  相似文献   

15.
Developing efficient oxygen evolution reaction(OER) electrocatalysts is of great importance for sustainable energy conversion and storage. Ni-based catalysts have shown great potential as OER electrocatalysts, but their performance still needs to be improved. Herein, we report the multiple metal doped nickel nanoparticles synthesized via a simple oil phase strategy as efficient OER catalysts. The FeMnMoV–Ni exhibits superior OER performance with an overpotential of 220 mV at 10 mA cm-2  相似文献   

16.
It is challenging to find a method to obtain a catalyst with low cost and efficient multifunctional performances. Herein, in order to obtain the electrode with high-performance water splitting and non-enzymatic glucose detection, the commercial graphite sheet (GS) with excellent durability and electroconductivity was used as substrate material, and the non-noble ternary component Ni–Co–P catalyst with hierarchical architecture was fabricated on GS via a co-electrodeposition. The catalyst only required low overpotentials of 44.6, 76.5 and 49 mV to drive the current density of 10 mA cm−2 alongside with the smaller Tafel slopes of 39.2, 44.8 and 112 mV dec−1 for hydrogen evolution reaction (HER) in 1.0 M KOH, 0.5 M H2SO4 and 1.0 M PBS solution, respectively. For oxygen evolution reaction (OER), the catalyst demonstrated a low overpotential of 304 mV to achieve the current density of 20 mA cm−2 with excellent Tafel slope of 89.8 mV dec−1 in alkaline solution. Furthermore, the Ni–Co–P/GS electrode serving as non-enzymatic glucose sensor exhibited the superior electrocatalytic activity with an ultrahigh sensitivity of 7400 μA mM−1 cm−2, low detection limit of 0.425 μM (S/N = 3), and wide linear range (1–1200 μM).  相似文献   

17.
Perovskite LaFeO3 is considered as a promising new anode material for nickel/metal hydride batteries due to its low cost, environmental friendliness and high temperature resistance. However, the poor conductivity of LaFeO3 material restricts the discharge ability, which is problematic for its future widespread application. To solve the above issue, in this study, we prepared C/Ni-coated LaFeO3 composite in view of the excellent electrical conductivity of carbon and nickel metal. Results show that the C/Ni-coated LaFeO3 composite delivers remarkably increased discharge capacity of ~345 mAh g?1 at 60 ?°C in contrast to ~267 mAh g?1 for pure LaFeO3. Furthermore, the carbon and nickel not only increase the electrical conductivity of the LaFeO3 but also reduces the agglomeration of the LaFeO3, therefore, the C/Ni-coated LaFeO3 composite serves superior long cycle-life, which maintains 60.9% after 100 cycles (52.9% for the LaFeO3 sample). In overall, the electrochemical behavior of the C/Ni-coated LaFeO3 composite confirms its high potential as nickel/metal hydride batteries for energy storage applications.  相似文献   

18.
Metallic glass nanoparticles hold great promise as nonenzymatic glucose sensors due to their rich low-coordinated active sites and high biocompatibility. However,their non-periodic atomic structure and unclear structure-property relationship pose significant challenges for realizing and optimizing their sensing performance. In this work, Pd–Ni–P metallic glass nanoparticles with variable compositions were successfully prepared as nonenzymatic glucose sensors via a laser-evaporated inertgas conde...  相似文献   

19.
The microstructure, mechanical and magnetic properties of Zr–x (8, 9, 10, wt.%)Nb–4Sn alloys were investigated to obtain novel Zr-based alloy with low Young’s modulus and magnetic susceptibility for biomedical implants. After homogenization annealing, hot forging and solution annealing, Zr–8Nb–4Sn, Zr–9Nb–4Sn and Zr–10Nb–4Sn alloys were composed of β+α″ phase, β+α″ phase, β+ω phase, respectively. The temperature at which the α" and ω phase were transformed into β phase during the heating process was about 200 ​°C, and the phase transformation temperature decreased with the increase of Nb element. Among all the Zr–x (x ​= ​8,9,10)Nb–4Sn(wt.%) alloys, Zr–9Nb–4Sn alloy had the lowest Young's modulus of 46.6 ​GPa and the low magnetic susceptibility of 1.294 ​× ​10−6 cm3g−1, which has a good application prospect for biomedical applications.  相似文献   

20.
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency, low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities (14.9 ​wt% and 145–147 ​kg ​cm−3). However, the drawbacks of Mg(BH4)2 including high desorption temperatures (about 250 ​°C–580 ​°C), sluggish kinetics, and poor reversibility make it difficult to be used for onboard hydrogen storage of fuel cell vehicles. A lot of researches on improving the dehydrogenation reaction thermodynamics and kinetics have been done, mainly including: additives or catalysts doping, nanoconfining Mg(BH4)2 in nanoporous hosts, forming reactive hydrides systems, multi-cation/anion composites or other derivatives of Mg(BH4)2. Some favorable results have been obtained. This review provides an overview of current research progress in magnesium borohydride, including: synthesis methods, crystal structures, decomposition behaviors, as well as emphasized performance improvements for hydrogen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号