首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The manganese sulfide (MnS) has attracted more attention as anode material on energy storage and conversion field, owing to its high theoretical capacity (616 ​mA ​h ​g−1) and good electrochemical activity. However, low electronic conductivity and large volume expansion during charge-discharge processes have limited its further application. In order to address above mentioned problems, the composites, MnS nanoparticles embedded in N,S-codoped porous carbon skeleton (named as MnS/N,S–C composites), herein have been prepared successfully using metal organic framework (Mn-NTA) as template. The porous carbon skeleton not only can enhance electrode conductivity, but also relieve volume expansion during charge-discharge processes. Thus, the rational design towards electrode architectures has endowed MnS/N,S–C nanocomposites with superior electrochemical performance, which delivers the specific capacities of 676.7 ​mA ​h ​g−1 at the current density of 100 ​mA ​g−1.  相似文献   

2.
FeCo-based non-noble metal electrocatalysts (NNMEs) of FeCo/MCS-NPCS was fabricated by immobilization of hemin on mesoporous carbon shells modified N-doped porous carbon spheres (MCS-NPCS). The obtained FeCo/MCS-NPCS exhibits a half-wave potential (E1/2) of 0.851 ​V versus the reversible hydrogen electrode (vs. RHE) and a limited-diffusion current density (JL) of 5.45 ​mA ​cm−2. In addition, FeCo/MCS-NPCS shows comparable oxygen reduction reaction (ORR) performances to 20 ​wt% Pt/C in terms of E1/2 and JL and better electrochemical properties, including the methanol tolerance and durability in alkaline solution. Such outstanding electrochemical activities of FeCo/MCS-NPCS can be ascribed to Fe and/or Co-based nitrides and carbides as well as N-doped carbon matrixes modified with mesoporous carbon shells. This research introduces a promising path to design and synthesize highly efficient FeCo–N–C electrocatalysts towards ORR.  相似文献   

3.
聚苯胺纳米纤维的界面聚合法合成及电化学电容行为   总被引:1,自引:0,他引:1  
利用盐酸和四氯化碳的水/油两相界面,通过界面聚合法合成具有良好纳米纤维结构的聚苯胺,用这种聚苯胺纳米纤维为活性物质制备电极,以1 mol/L H2SO4水溶液为电解液组装超级电容器,通过恒电流充放电、循环伏安、交流阻抗等技术研究其电化学电容行为。研究结果表明,合成的聚苯胺的直径为50~100 nm,长度为500nm至几微米不等,且纤维之间相互交织缠绕,形成网状形貌;聚苯胺纳米纤维电极材料的功率特性与循环性能优于用传统化学氧化法合成的颗粒状聚苯胺材料的性能,在5 mA放电电流下,其比电容可达317 F/g,20mA放电电流下比电容仍维持300 F/g左右,500次循环容量衰减在4%以内。  相似文献   

4.
Fe-and Al-based thin-film metallic glass coatings (Fe44Al34Ti7N15 and Al61Ti11N28) were fabricated using magnetron co-sputtering technique, and their corrosion performances compared against wrought 316L stainless steel. The results of GI-XRD and XPS analyses demonstrated amorphous structure and oxide layer formation on the surface of the fabricated thin films, respectively. The potentiodynamic (PD) polarization test in chloride-thiosulfate (NH4Cl ​+ ​Na2S2O3) solution revealed lower corrosion current (Icorr) (0.42 ​± ​0.02 ​μA/cm2 and 0.086 ​± ​0.001 ​μA/cm2 Vs. 0.76 ​± ​0.05 ​μA/cm2), lower passivation current (Ipass) (1.45 ​± ​0.03 ​μA/cm2 and 1.83 ​± ​0.07 ​μA/cm2 Vs. 1.98 ​± ​0.04 ​μA/cm2), and approximately six-fold higher breakdown potential (Ebd) for Fe- and Al-based coatings than those of wrought 316L stainless steel. Electrochemical Impedance Spectroscopy (EIS) of both films showed 4- and 2-fold higher charge transfer resistance (Rct), 7- and 2.5-times higher film resistance (Rf), lower film capacitance values (Qf) (10 ​± ​2.4 ​μS-sacm-2, and 5.41 ​± ​0.8 ​μS-sacm-2 Vs. 18 ​± ​2.21 ​μS-sacm-2), and lower double-layer capacitance values (Qdl) (31.33 ​± ​4.74 ​μS-sacm-2, and 15.3 ​± ​0.48 ​μS-sacm-2 Vs. 43 ​± ​4.23 ​μS-sacm-2), indicating higher corrosion resistance of the thin films. Cyclic Voltammetry (CV) scan exhibited that the passive films formed on the Fe- and Al-based coatings were more stable and less prone to pitting corrosion than the wrought 316L stainless steel. The surface morphology of both films via SEM endorsed the CV scan results, showing better resistance to pitting corrosion. Furthermore, the thermal analysis via TGA and DSC revealed the excellent thermal stability of the thin films over a wide temperature range typically observed in oil-gas industries.  相似文献   

5.
Transition metal phosphides have been recognized as promising electrocatalysts for oxygen evolution reaction(OER) due to their low cost and high activity. However, the insufficient exposed active region limited the OER performance. Recently, the introduction of sacrificial dopants has been considered an effective strategy to enlarge the surface area. Herein, the Zn dopants are introduced in NiFe phosphide(NiFeZnP) nanosheet, which work as the sacrificial dopants to generate more exposed active N...  相似文献   

6.
Developing efficient oxygen evolution reaction(OER) electrocatalysts is of great importance for sustainable energy conversion and storage. Ni-based catalysts have shown great potential as OER electrocatalysts, but their performance still needs to be improved. Herein, we report the multiple metal doped nickel nanoparticles synthesized via a simple oil phase strategy as efficient OER catalysts. The FeMnMoV–Ni exhibits superior OER performance with an overpotential of 220 mV at 10 mA cm-2  相似文献   

7.
High-capacity anode materials have stimulated much attention to developing high-performance lithium-ion batteries. However, high-capacity anode materials commonly suffer from the pulverization matter that greatly hinders their practical applications, especially in terms of the high proportion of active materials. In this work, a Ga2O3nanowire electrode is synthesized by thermal evaporation and immediately used as an anode without the aid of binders and conductive additives....  相似文献   

8.
掺锂聚苯胺/活性炭超级电容器电极材料的制备及电性能   总被引:1,自引:0,他引:1  
采用苯胺在改性活性炭表面原位聚合的方法,合成了掺锂的超级电容器用聚苯胺/活性炭复合电极材料.用扫描电镜(SEM)研究了掺杂前后该复合材料的形态.在6mol/LKOH溶液中,以Hg/HgO电极为参比电极对电极材料进行循环伏安、恒流充放电、交流阻抗等电化学性能的测试,考察了掺杂锂盐后作为超级电容器的电极材料的电极性能.结果表明,掺杂锂盐后的复合电极材料的比容量有很明显的提高,由未掺杂锂时的372F/g提高到466F/g。多次循环充放电后电容量的保留率也得到显著的提高。  相似文献   

9.
To promote substantially the performances of red phosphorous (P) anode for lithium and sodium-ion batteries, a simple plasma assisted milling (P-milling) method was used to in-situ synthesize SeP2/C composite. The results showed that the amorphous SeP2/C composite exhibits the excellent lithium and sodium storage performances duo to the small nano-granules size and complete combination of selenium (Se) and phosphorous (P) to generate Se–P alloy phase. It was observed that inside the granules of SeP2/C composite the nanometer size of the SeP2 particles ensured the fast kinetics for Li+ and Na+ ​transfer, and the amorphous carbon wrapping the SeP2 particles relieved volume expansion during lithium/sodium storage processes and enhances electric conductivity. Therefore, the SeP2/C electrode retained reversible capacities of 700 ​mA ​h ​g−1 at 2 ​A ​g−1 after 500 cycles and 400 ​mA ​h ​g−1 at 0.5 ​A ​g−1 after 400 cycles as anode for LIBs and SIBs, respectively. The result proves that the amorphous SeP2/C composite can be a new type of anode material with great potential for lithium and sodium-ion batteries.  相似文献   

10.
The microstructure, mechanical and magnetic properties of Zr–x (8, 9, 10, wt.%)Nb–4Sn alloys were investigated to obtain novel Zr-based alloy with low Young’s modulus and magnetic susceptibility for biomedical implants. After homogenization annealing, hot forging and solution annealing, Zr–8Nb–4Sn, Zr–9Nb–4Sn and Zr–10Nb–4Sn alloys were composed of β+α″ phase, β+α″ phase, β+ω phase, respectively. The temperature at which the α" and ω phase were transformed into β phase during the heating process was about 200 ​°C, and the phase transformation temperature decreased with the increase of Nb element. Among all the Zr–x (x ​= ​8,9,10)Nb–4Sn(wt.%) alloys, Zr–9Nb–4Sn alloy had the lowest Young's modulus of 46.6 ​GPa and the low magnetic susceptibility of 1.294 ​× ​10−6 cm3g−1, which has a good application prospect for biomedical applications.  相似文献   

11.
Lithium metal anode with high theoretical capacity is considered to be one of the most potential anode materials of the next generation. However, the growth of lithium dendrite seriously affects the application of lithium metal anode and the development of lithium metal batteries (LMBs). Herein, an ultrathin Li3N film modified separator to homogenize the lithium ions and protect the lithium metal anode was reported. Due to the intrinsic properties of Li3N, the functional separator possessed good thermal stability, mechanical properties and electrolyte wettability, and the homogenization of the lithium ion was realized without increasing the interface impedance. With this functional separator, the Li/Li symmetrical cell could achieve a long cycle with low overpotential for 1000 ​h at a current density of 1 ​mA ​cm−2. Furthermore, when the full battery was assembled with LiFePO4 and the discharge capacity could be maintained at 151 mAh g−1 after 400 cycles at 1 ​C. In addition, the full battery also showed good rate performance, and provided a high discharge capacity of 114 mAh g−1 at 5 ​C.  相似文献   

12.
Designing highly active and durable oxygen reduction reaction (ORR) electrocatalysts is essential for developing efficient proton-exchange membrane fuel cells (PEMFCs). In this work, ordered PtCuNi/C nanoparticles (NPs) were synthesized using an impregnation reduction method. This study shows that the incorporation of Ni in ordered PtCu/C can effectively adjust the electronic structure of Pt, thereby optimizing oxygen binding energy for the ORR. The obtained intermetallic ordered PtCuNi/C NPs significantly improved ORR activity and durability compared to ordered PtCu/C. Specifically, PtCu0·5Ni0·5/C-700 shows a mass activity of 1.29 ​A ​mg Pt−1 ​at 0.9 ​V vs. reversible hydrogen electrode (RHE), which is about 9.2 times higher than that of commercial Pt/C. PtCu0.5Ni0.5/C-700 is also shown to be competent cathode catalyst for a single-cell system exhibiting high power density (461 ​mW ​cm−2). This work demonstrates that ordered PtCu0·5Ni0·5/C-700 can be used as a highly active and durable ORR catalyst in PEMFCs.  相似文献   

13.
Recently, the introduction of external fields(light, thermal, magnetism, etc.) during electrocatalysis reactions gradually becomes a new strategy to modulate the catalytic activities. In this work, an external magnetic field was innovatively employed for the synthesis progress of(Ni, Zn)Fe2O4spinel oxide(M-(Ni, Zn)Fe2O4). Results indicated the magnetic field(≤250 m T) would affect the morphology of catalyst due to the existing Fe ions, inducing the M-(...  相似文献   

14.
Metallic glass nanoparticles hold great promise as nonenzymatic glucose sensors due to their rich low-coordinated active sites and high biocompatibility. However,their non-periodic atomic structure and unclear structure-property relationship pose significant challenges for realizing and optimizing their sensing performance. In this work, Pd–Ni–P metallic glass nanoparticles with variable compositions were successfully prepared as nonenzymatic glucose sensors via a laser-evaporated inertgas conde...  相似文献   

15.
As a candidate material for hydrogen separation, Yb-doped SrCeO3 has attracted increasing attention in recent decades. In the present study, Yb-doped SrCe0.9Yb0.1O3-α ceramics were prepared by the dry pressing and sintering approach, with the microstructure evolution and the micro morphology investigated. It was indicated that the ceramics sintered in air were of a pure perovskite structure, and that the sintering temperature had a significant effect on the growth of ceramic grains. The average grain size increased from 1 ​μm to 10 ​μm with an increase in sintering temperature from 1300 to 1500 ​°C. Further investigation of the thermodynamics and kinetics of grain growth revealed that the grain boundary diffusion was the main driving force of grain growth during solid phase sintering, with a grain growth index of 4 and an activation energy of approximately 61.23 ​kJ ​mol−1. These results illustrate an obvious tendency of grain size growth. By electrochemical workstation with different atmospheres the effects of sintering temperature on the conductivity were characterized in the temperature range of 700–900 ​°C. The electrical conductivities σ of SrCe0.9Yb0.1O3-α ceramics in different atmospheres were as follows: σ(wet hydrogen) ​> ​σ(dry hydrogen) ​> ​σ(dry air) ​> ​σ(wet air). In the test atmosphere containing water and hydrogen the conductivity of protons increased with increasing temperature because of the protons jump between lattices in the form of interstitial hydrogen ions or bare protons.  相似文献   

16.
有机体系下,采用循环伏安法(CV)在活性炭电极表面电聚合聚苯胺制备聚苯胺/活性炭复合电极,通过循环伏安、恒流充放电和电化学交流阻抗谱(EIS)测试了电极的电化学特性,结果表明,聚苯胺/活性炭复合电极具有良好的电容行为,在-1.0~1.5V参比极为Ag/AgCl,测试区间内具有较大的电化学容量,电极比电容高达276F·g-1,较活性炭电极的比电容92F·g-1有了很大提高.并且交流阻抗法测得活性炭电极的电荷转移电阻Rct为4.9Ω,而复合电极Rct仅2.4Ω.1000次充放电测试后,复合电极比电容仅衰减15.7%.由此表明,在有机体系下聚苯胺/活性炭复合电极是一种具有良好循环寿命和高比电容的复合电极材料.  相似文献   

17.
It is challenging to find a method to obtain a catalyst with low cost and efficient multifunctional performances. Herein, in order to obtain the electrode with high-performance water splitting and non-enzymatic glucose detection, the commercial graphite sheet (GS) with excellent durability and electroconductivity was used as substrate material, and the non-noble ternary component Ni–Co–P catalyst with hierarchical architecture was fabricated on GS via a co-electrodeposition. The catalyst only required low overpotentials of 44.6, 76.5 and 49 mV to drive the current density of 10 mA cm−2 alongside with the smaller Tafel slopes of 39.2, 44.8 and 112 mV dec−1 for hydrogen evolution reaction (HER) in 1.0 M KOH, 0.5 M H2SO4 and 1.0 M PBS solution, respectively. For oxygen evolution reaction (OER), the catalyst demonstrated a low overpotential of 304 mV to achieve the current density of 20 mA cm−2 with excellent Tafel slope of 89.8 mV dec−1 in alkaline solution. Furthermore, the Ni–Co–P/GS electrode serving as non-enzymatic glucose sensor exhibited the superior electrocatalytic activity with an ultrahigh sensitivity of 7400 μA mM−1 cm−2, low detection limit of 0.425 μM (S/N = 3), and wide linear range (1–1200 μM).  相似文献   

18.
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency, low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities (14.9 ​wt% and 145–147 ​kg ​cm−3). However, the drawbacks of Mg(BH4)2 including high desorption temperatures (about 250 ​°C–580 ​°C), sluggish kinetics, and poor reversibility make it difficult to be used for onboard hydrogen storage of fuel cell vehicles. A lot of researches on improving the dehydrogenation reaction thermodynamics and kinetics have been done, mainly including: additives or catalysts doping, nanoconfining Mg(BH4)2 in nanoporous hosts, forming reactive hydrides systems, multi-cation/anion composites or other derivatives of Mg(BH4)2. Some favorable results have been obtained. This review provides an overview of current research progress in magnesium borohydride, including: synthesis methods, crystal structures, decomposition behaviors, as well as emphasized performance improvements for hydrogen storage.  相似文献   

19.
采用原位电化学聚合含有饱和单壁碳纳米管(SWNT)的苯胺(ANI)溶液来制备单壁碳纳米管/聚苯胺(SWNT/PANI)复合膜,对复合膜的表面形貌与结构性质采用扫描电子显微镜进行观察,并用循环伏安法,充放电测试,和交流阻抗测试等手段对复合膜的电化学电容特性进行详细探讨.实验结果表明,纯PANI和SWNT/PANI复合物的比电容量分别为156.5F/g,186.4F/g.由复平面阻抗谱图的最高频率点可以求出纯PANI和SWNT/PANI复合膜的内阻分别为15.8,6.7Ω.  相似文献   

20.
以商品化活性炭为原料,在1mol/L盐酸环境下采用原位聚合法制备了聚苯胺/活性炭复合材料(PANI/C),复合材料中聚苯胺的质量分数为46.4%.用循环伏安、交流阻抗、恒流充放电测试等方法考察比较了新材料与原活性炭在1mol/L H2SO4溶液中的电容性能.结果表明,新材料的比容量和大电流充放电性能均优于碳材料.3.0mA/cm^2电流密度下,复合材料电极比容量高达448.7F/g,比原碳材料提高60%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号