首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Effects of Al addition to a Mg–Sn–Ca ternary alloy on its microstructure and tensile properties after extrusion were studied via extrusion of Mg-1.0 Sn-0.5 Ca-x Al(x = 0, 0.8, 2.4 wt%) sheets and analysis of the extruded materials.The results showed that Al addition not only refined the grain size(from 9.8 ± 0.7 μm to 8.3 ± 0.4 μm and7.6 ± 0.5 μm) but also accelerated the generation of more second phase(from 0.98 to 1.72 and 4.32%). Except for the CaMgSn and Mg2Ca in Mg-1.0Sn-0.5 Ca a...  相似文献   

2.
Mg-based materials are currently a hot research topic as hydrogen storage materials due to their considerable theoretical hydrogen storage capacity. However, the kinetic performance of hydrogen absorption and desorption of Mg is too slow and requires high temperature, which seriously hinders the application of this material. MXene is a new type of two-dimensional material with significant role in improving thermodynamics and kinetics. In this experiment, a two-dimensional layered MXene containing Cl functional group was prepared by molten salt etching using the Ti-containing MAX phase as the raw material. Then different ratios of Ti3C2Clx were uniformly dispersed onto the surface of Mg by high energy ball milling. The samples were characterized by hydrogen absorption and desorption kinetics, SEM, XRD, XPS, and DSC to investigate the effect of Ti3C2Clx on the hydrogen absorption and desorption performance of Mg. The onset hydrogen absorption temperature can be reduced to room temperature and the hydrogen release temperature is reduced by 200 ​°C by doping Ti3C2Clx. And there is also 5.4 ​wt% hydrogen storage in the isothermal hydrogen absorption test at 400 ​°C. The results of DSC demonstrate that the Ea of Mg+15 ​wt% Ti3C2Clx was reduced by 12.6% compared to pristine Mg. The ΔH is almost invariable. The results of XPS show that the presence of multivalent Ti promotes electron transfer and thus improves the conversion between Mg2+/Mg and H/H. This study provides a guideline for further improving the hydrogen absorption and desorption performance of Mg-based hydrogen storage materials.  相似文献   

3.
Ba2SmTaO6 laser protection coatings of ≈200 μm thickness were deposited onto stainless steel surfaces by air plasma spraying, and the laser irradiation resistance of the coatings was investigated. For laser irradiation with a laser power density less than 1000 W/cm2, the coatings kept intact. For a laser power density exceeding 1500 W/cm2, the Ba2SmTaO6 coatings underwent recrystallization, grain growth occurred, and certain spray...  相似文献   

4.
As a candidate material for hydrogen separation, Yb-doped SrCeO3 has attracted increasing attention in recent decades. In the present study, Yb-doped SrCe0.9Yb0.1O3-α ceramics were prepared by the dry pressing and sintering approach, with the microstructure evolution and the micro morphology investigated. It was indicated that the ceramics sintered in air were of a pure perovskite structure, and that the sintering temperature had a significant effect on the growth of ceramic grains. The average grain size increased from 1 ​μm to 10 ​μm with an increase in sintering temperature from 1300 to 1500 ​°C. Further investigation of the thermodynamics and kinetics of grain growth revealed that the grain boundary diffusion was the main driving force of grain growth during solid phase sintering, with a grain growth index of 4 and an activation energy of approximately 61.23 ​kJ ​mol−1. These results illustrate an obvious tendency of grain size growth. By electrochemical workstation with different atmospheres the effects of sintering temperature on the conductivity were characterized in the temperature range of 700–900 ​°C. The electrical conductivities σ of SrCe0.9Yb0.1O3-α ceramics in different atmospheres were as follows: σ(wet hydrogen) ​> ​σ(dry hydrogen) ​> ​σ(dry air) ​> ​σ(wet air). In the test atmosphere containing water and hydrogen the conductivity of protons increased with increasing temperature because of the protons jump between lattices in the form of interstitial hydrogen ions or bare protons.  相似文献   

5.
InSb epilayers and InSb/Al0.20In0.80Sb quantum wells were grown on Ge(001)substrates and Ge-on-insulator(GeOI)-on-Si(001)substrates by molecular beam epitaxy.Growth on both on-axis and 4°-off-axis substrate orientations was studied.Anti-phase domains were formed when InSb films were grown on on-axis substrates,but suppressed significantly by the use of 4°-off-axis substrates.Such off-axis substrates also reduced the densities of micro-twin defects and threading dislocations.The defect reduction resulted in an increase in the room-temperature electron mobility from 37,000 to 59,000 cm2/Vs in 4.0-lm-thick InSb epilayers and from 10,000 to20,000 cm2/Vs in 25-nm-thick InSb quantum wells on Ge(001)and GeOI-on-Si(001)substrates.  相似文献   

6.
The increasing demand for portable and flexible energy storage devices drives the development of flexible electrodes and electrolytes. The aim of this work is to fabricate the flexible free-standing polyaniline/poly(vinyl alcohol)(PANI/PVA) composite electrode with good capacitance performance and shape memory behavior. The electrodes were fabricated by chemical oxidation polymerization of aniline in porous PVA(P-PVA) films. The morphology, electrochemical and mechanical properties of PANI/P-PVA...  相似文献   

7.
To promote substantially the performances of red phosphorous(P) anode for lithium and sodium-ion batteries, a simple plasma assisted milling(P-milling) method was used to in-situ synthesize SeP2/C composite. The results showed that the amorphous SeP2/C composite exhibits the excellent lithium and sodium storage performances duo to the small nano-granules size and complete combination of selenium(Se) and phosphorous(P) to generate Se–P alloy phase. It was observed that insid...  相似文献   

8.
Designing highly active and durable oxygen reduction reaction (ORR) electrocatalysts is essential for developing efficient proton-exchange membrane fuel cells (PEMFCs). In this work, ordered PtCuNi/C nanoparticles (NPs) were synthesized using an impregnation reduction method. This study shows that the incorporation of Ni in ordered PtCu/C can effectively adjust the electronic structure of Pt, thereby optimizing oxygen binding energy for the ORR. The obtained intermetallic ordered PtCuNi/C NPs significantly improved ORR activity and durability compared to ordered PtCu/C. Specifically, PtCu0·5Ni0·5/C-700 shows a mass activity of 1.29 ​A ​mg Pt−1 ​at 0.9 ​V vs. reversible hydrogen electrode (RHE), which is about 9.2 times higher than that of commercial Pt/C. PtCu0.5Ni0.5/C-700 is also shown to be competent cathode catalyst for a single-cell system exhibiting high power density (461 ​mW ​cm−2). This work demonstrates that ordered PtCu0·5Ni0·5/C-700 can be used as a highly active and durable ORR catalyst in PEMFCs.  相似文献   

9.
Lithium metal anode with high theoretical capacity is considered to be one of the most potential anode materials of the next generation. However, the growth of lithium dendrite seriously affects the application of lithium metal anode and the development of lithium metal batteries(LMBs). Herein, an ultrathin Li3N film modified separator to homogenize the lithium ions and protect the lithium metal anode was reported. Due to the intrinsic properties of Li3N, the functional sep...  相似文献   

10.
Metallic glass nanoparticles hold great promise as nonenzymatic glucose sensors due to their rich low-coordinated active sites and high biocompatibility. However,their non-periodic atomic structure and unclear structure-property relationship pose significant challenges for realizing and optimizing their sensing performance. In this work, Pd–Ni–P metallic glass nanoparticles with variable compositions were successfully prepared as nonenzymatic glucose sensors via a laser-evaporated inertgas conde...  相似文献   

11.
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency, low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities(14.9 wt% and 145–147 kg cm-3). However, the drawbacks of Mg(BH4)2 including high desorption temperatures(about 250°C–580°C), sluggish kinetics, and poor reversibility make it...  相似文献   

12.
FeCo-based non-noble metal electrocatalysts (NNMEs) of FeCo/MCS-NPCS was fabricated by immobilization of hemin on mesoporous carbon shells modified N-doped porous carbon spheres (MCS-NPCS). The obtained FeCo/MCS-NPCS exhibits a half-wave potential (E1/2) of 0.851 ​V versus the reversible hydrogen electrode (vs. RHE) and a limited-diffusion current density (JL) of 5.45 ​mA ​cm−2. In addition, FeCo/MCS-NPCS shows comparable oxygen reduction reaction (ORR) performances to 20 ​wt% Pt/C in terms of E1/2 and JL and better electrochemical properties, including the methanol tolerance and durability in alkaline solution. Such outstanding electrochemical activities of FeCo/MCS-NPCS can be ascribed to Fe and/or Co-based nitrides and carbides as well as N-doped carbon matrixes modified with mesoporous carbon shells. This research introduces a promising path to design and synthesize highly efficient FeCo–N–C electrocatalysts towards ORR.  相似文献   

13.
Recently, the introduction of external fields(light, thermal, magnetism, etc.) during electrocatalysis reactions gradually becomes a new strategy to modulate the catalytic activities. In this work, an external magnetic field was innovatively employed for the synthesis progress of(Ni, Zn)Fe2O4spinel oxide(M-(Ni, Zn)Fe2O4). Results indicated the magnetic field(≤250 m T) would affect the morphology of catalyst due to the existing Fe ions, inducing the M-(...  相似文献   

14.
It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the commercialization of fuel cell technology. To achieve this target, we report a one-step doping method to prepare S-doped Fe–N–C catalysts using zeolite imidazole framework (ZIF-8) and iron (III) thiocyanate (Fe(SCN)3) as precursor. Different from conventional doping approach, i.e. physical mixing, Fe(SCN)3 is in-situ added during ZIF-8 formation which would encapsulate Fe(SCN)3 molecules inside ZIF-8 to avoid structure destruction and create potential replacement of Zn ions by Fe ions to form uniform Fe–N4 complexes. As a result, the prepared S-doped Fe–N–C catalysts own large specific surface areas with a maximum value of 1326 ​m2 ​g−1 and a dual-scale porous structure that benefits mass transport. Significantly, the composition-optimized catalyst exhibits superior ORR activity in both 0.1 ​M HClO4 electrolyte and 0.1 ​M KOH electrolyte, in which the half-wave potential reaches 0.81 ​V and 0.92 ​V (vs. RHE), respectively. Remarkable stability is also attained, which loses 2 ​mV only after 10000 potential cycles in O2-saturated 0.1 ​M HClO4 and remains almost constant in O2-saturated 0.1 ​M KOH, surpassing commercial Pt/C catalyst in both acidic and alkaline medium.  相似文献   

15.
The influence of heat treatments on the microstructures and mechanical properties of the selective laser melting manufactured AlSi10Mg alloy modified with Sc was systematically investigated. The results showed that the addition of Sc element introduced primary Al3 Sc, which increased the heterogeneous nucleation during the solidification of AlSi10Mg alloy, and then the ultrafine network eutectic structure was obtained, and hence the tensile strength was improved significantly(nearly 2...  相似文献   

16.
Ni–Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80℃ was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.  相似文献   

17.
Transition metal phosphides have been recognized as promising electrocatalysts for oxygen evolution reaction(OER) due to their low cost and high activity. However, the insufficient exposed active region limited the OER performance. Recently, the introduction of sacrificial dopants has been considered an effective strategy to enlarge the surface area. Herein, the Zn dopants are introduced in NiFe phosphide(NiFeZnP) nanosheet, which work as the sacrificial dopants to generate more exposed active N...  相似文献   

18.
The creep behavior and dislocation mechanism of Ni3Al-based single crystal alloys IC6 SX with crystal orientation[001] which was prepared by seed crystal method under the testing conditions of 760℃/500 MPa,760℃/540 MPa and 760℃/580 MPa were investigated. The experimental results showed that the creep properties,dislocation morphology and mechanism of this alloy were different under different stress conditions. With the stress increasing from 500 MPa to 580 MPa, the creep life decrease...  相似文献   

19.
Developing efficient oxygen evolution reaction(OER) electrocatalysts is of great importance for sustainable energy conversion and storage. Ni-based catalysts have shown great potential as OER electrocatalysts, but their performance still needs to be improved. Herein, we report the multiple metal doped nickel nanoparticles synthesized via a simple oil phase strategy as efficient OER catalysts. The FeMnMoV–Ni exhibits superior OER performance with an overpotential of 220 mV at 10 mA cm-2  相似文献   

20.
This paper reports the first demonstration of super broadband infrared downshifting emission extending from 1640 ​nm to 2200 ​nm with the full width at half maximum of ∼ 417 ​nm in lanthanides (Er3+, Ho3+, and Tm3+)-doped α-SiAlON ceramics upon 793 ​nm excitation. Using α-Si3N4 ceramic as a precursor the lanthanides-doped α-SiAlON ceramics were synthesized by the hot-press method. The lanthanides induced no significant secondary phases in the sintered α-SiAlON ceramics. Strong two-photon upconversion emission bands centered at 547, 671 and 694 ​nm have also been observed upon 793 ​nm excitation. The time-resolved measurements of the upconversion emissions confirm that the efficient energy transfer among the Er3+, Ho3+ and Tm3+ ions as well as the ground state absorption in Er3+ and Tm3+ are responsible for the observed spectroscopic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号