首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Das  C D Gilbert 《Nature》1999,399(6737):655-661
Neurons in primary visual cortex (V1) respond differently to a simple visual element presented in isolation from when it is embedded within a complex image. This difference, a specific modulation by surrounding elements in the image, is mediated by short- and long-range connections within V1 and by feedback from other areas. Here we study the role of short-range connections in this process, and relate it to the layout of local inhomogeneities in the cortical maps of orientation and space. By measuring correlation between neuron pairs located in optically imaged maps of V1 orientation columns we show that the strength of local connections between cells is a graded function of lateral separation across cortex, largely radially symmetrical and relatively independent of orientation preferences. We then show the contextual influence of flanking visual elements on neuronal responses varies systematically with a neuron's position within the cortical orientation map. The strength of this contextual influence on a neuron can be predicted from a model of local connections based on simple overlap with particular features of the orientation map. This indicates that local intracortical circuitry could endow neurons with a graded specialization for processing angular visual features such as corners and T junctions, and this specialization could have its own functional cortical map, linked with the orientation map.  相似文献   

2.
Identifying natural images from human brain activity   总被引:1,自引:0,他引:1  
Kay KN  Naselaris T  Prenger RJ  Gallant JL 《Nature》2008,452(7185):352-355
A challenging goal in neuroscience is to be able to read out, or decode, mental content from brain activity. Recent functional magnetic resonance imaging (fMRI) studies have decoded orientation, position and object category from activity in visual cortex. However, these studies typically used relatively simple stimuli (for example, gratings) or images drawn from fixed categories (for example, faces, houses), and decoding was based on previous measurements of brain activity evoked by those same stimuli or categories. To overcome these limitations, here we develop a decoding method based on quantitative receptive-field models that characterize the relationship between visual stimuli and fMRI activity in early visual areas. These models describe the tuning of individual voxels for space, orientation and spatial frequency, and are estimated directly from responses evoked by natural images. We show that these receptive-field models make it possible to identify, from a large set of completely novel natural images, which specific image was seen by an observer. Identification is not a mere consequence of the retinotopic organization of visual areas; simpler receptive-field models that describe only spatial tuning yield much poorer identification performance. Our results suggest that it may soon be possible to reconstruct a picture of a person's visual experience from measurements of brain activity alone.  相似文献   

3.
Basole A  White LE  Fitzpatrick D 《Nature》2003,423(6943):986-990
Stimulus features such as edge orientation, motion direction and spatial frequency are thought to be encoded in the primary visual cortex by overlapping feature maps arranged so that the location of neurons activated by a particular combination of stimulus features can be predicted from the intersections of these maps. This view is based on the use of grating stimuli, which limit the range of stimulus combinations that can be examined. We used optical imaging of intrinsic signals in ferrets to assess patterns of population activity evoked by the motion of a texture (a field of iso-oriented bars). Here we show that the same neural population can be activated by multiple combinations of orientation, length, motion axis and speed. Rather than reflecting the intersection of multiple maps, our results indicate that population activity in primary visual cortex is better described as a single map of spatiotemporal energy.  相似文献   

4.
Ohki K  Chung S  Ch'ng YH  Kara P  Reid RC 《Nature》2005,433(7026):597-603
Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100 microm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400 microm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.  相似文献   

5.
Gaze direction controls response gain in primary visual-cortex neurons   总被引:11,自引:0,他引:11  
Trotter Y  Celebrini S 《Nature》1999,398(6724):239-242
To localize objects in space, the brain needs to combine information about the position of the stimulus on the retinae with information about the location of the eyes in their orbits. Interaction between these two types of information occurs in several cortical areas, but the role of the primary visual cortex (area V1) in this process has remained unclear. Here we show that, for half the cells recorded in area V1 of behaving monkeys, the classically described visual responses are strongly modulated by gaze direction. Specifically, we find that selectivity for horizontal retinal disparity-the difference in the position of a stimulus on each retina which relates to relative object distance-and for stimulus orientation may be present at a given gaze direction, but be absent or poorly expressed at another direction. Shifts in preferred disparity also occurred in several neurons. These neural changes were most often present at the beginning of the visual response, suggesting a feedforward gain control by eye position signals. Cortical neural processes for encoding information about the three-dimensional position of a stimulus in space therefore start as early as area V1.  相似文献   

6.
von Melchner L  Pallas SL  Sur M 《Nature》2000,404(6780):871-876
An unresolved issue in cortical development concerns the relative contributions of intrinsic and extrinsic factors to the functional specification of different cortical areas. Ferrets in which retinal projections are redirected neonatally to the auditory thalamus have visually responsive cells in auditory thalamus and cortex, form a retinotopic map in auditory cortex and have visual receptive field properties in auditory cortex that are typical of cells in visual cortex. Here we report that this cross-modal projection and its representation in auditory cortex can mediate visual behaviour. When light stimuli are presented in the portion of the visual field that is 'seen' only by this projection, 'rewired' ferrets respond as though they perceive the stimuli to be visual rather than auditory. Thus the perceptual modality of a neocortical region is instructed to a significant extent by its extrinsic inputs. In addition, gratings of different spatial frequencies can be discriminated by the rewired pathway, although the grating acuity is lower than that of the normal visual pathway.  相似文献   

7.
He S  MacLeod DI 《Nature》2001,411(6836):473-476
Exposure to visual patterns of high contrast (for example, gratings formed by alternating white and black bars) creates after-effects in perception. We become temporarily insensitive to faint test patterns that resemble the pre-exposed pattern (such as gratings of the same orientation), and we require more contrast to detect them. Moreover, if the test pattern is slightly tilted relative to the pre-exposed one, this tilt may be perceptually exaggerated: we experience a tilt after-effect. Here we show that these visual after-effects occur even if the pre-exposed grating is too fine to be perceptually resolved. After looking at a very fine grating, so high in spatial frequency that it was perceptually indistinguishable from a uniform field, observers required more contrast to detect a test grating presented at the same orientation than one presented at the orthogonal orientation. They also experienced a tilt after-effect that depended on the relation of the test pattern's tilt to the unseen orientation of the pre-exposed pattern. Because these after-effects are due to changes in orientation-sensitive mechanisms in visual cortex, our observations imply that extremely fine details, even those too fine to be seen, can penetrate the visual system as far as the cortex, where they are represented neurally without conscious awareness.  相似文献   

8.
T Bonhoeffer  A Grinvald 《Nature》1991,353(6343):429-431
The mammalian cortex is organized in a columnar fashion: neurons lying below each other from the pia to the white matter usually share many functional properties. Across the cortical surface, cells with similar response properties are also clustered together, forming elongated bands or patches. Some response properties, such as orientation preference in the visual cortex, change gradually across the cortical surface forming 'orientation maps'. To determine the precise layout of iso-orientation domains, knowledge of responses not only to one but to many stimulus orientations is essential. Therefore, the exact depiction of orientation maps has been hampered by technical difficulties and remained controversial for almost thirty years. Here we use in vivo optical imaging based on intrinsic signals to gather information on the responses of a piece of cortex to gratings in many different orientations. This complete set of responses then provides detailed information on the structure of the orientation map in a large patch of cortex from area 18 of the cat. We find that cortical regions that respond best to one orientation form highly ordered patches rather than elongated bands. These iso-orientation patches are organized around 'orientation centres', producing pinwheel-like patterns in which the orientation preference of cells is changing continuously across the cortex. We have also analysed our data for fast changes in orientation preference and find that these 'fractures' are limited to the orientation centres. The pinwheels and orientation centres are such a prominent organizational feature that it should be important to understand their development as well as their function in the processing of visual information.  相似文献   

9.
结合初级视皮层的结构及其功能特性,模拟初级皮层的轮廓感知功能,提出一种有效的基于人类视觉感知机制的轮廓检测算法.首先,利用局部能量建立复杂细胞响应模型;然后,结合初级视皮层细胞排列特性构建图像信息与皮层细胞的映射关系,通过模拟神经元间的水平连接机制,实现对图像轮廓信息的增强和背景信息的抑制,建立了以初级视皮层风车状结构为基础的轮廓感知模型.实验结果表明:所提方法在保持目标轮廓完整性的同时,对背景信息的抑制效果更为有效;可以更加有效地对图像背景纹理进行抑制和对目标轮廓进行增强,在一定程度上达到了轮廓过度检测与欠检测的平衡,检测出的目标轮廓位置也更加精准.  相似文献   

10.
A neurological dissociation between perceiving objects and grasping them   总被引:25,自引:0,他引:25  
M A Goodale  A D Milner  L S Jakobson  D P Carey 《Nature》1991,349(6305):154-156
Studies of the visual capacity of neurological patients have provided evidence for a dissociation between the perceptual report of a visual stimulus and the ability to direct spatially accurate movements toward that stimulus. Some patients with damage to the parietal lobe, for example, are unable to reach accurately towards visual targets that they unequivocally report seeing. Conversely, some patients with extensive damage to primary visual cortex can make accurate pointing movements or saccades toward a stimulus presented in their 'blind' scotoma. But in investigations of visuomotor control in patients with visual disorders, little consideration has been given to complex acts such as manual prehension. Grasping a three-dimensional object requires knowledge not only of the object's spatial location, but also of its form, orientation and size. We have examined a patient with a profound disorder in the perception of such object qualities. Our quantitative analyses demonstrate strikingly accurate guidance of hand and finger movements directed at the very objects whose qualities she fails to perceive. These data suggest that the neural substrates for the visual perception of object qualities such as shape, orientation and size are distinct from those underlying the use of those qualities in the control of manual skills.  相似文献   

11.
G Jeffery 《Nature》1985,313(6003):575-576
In mammals, the major subcortical visual structures receive projections from both eyes, with the uncrossed projection being smaller than the crossed. Each projection is arranged as a separate orderly map of one hemiretina. Although these hemiretinal maps are separate in the nuclei, they are aligned so that the representations of points in the visual field are in register, thus there is a continuity of visual field representation between them. During the early development of the binocular pathways, terminals from the two eyes overlap almost entirely. As development proceeds, terminals arising from each eye segregate to form the adult pattern. In the present study, local retinal lesions were made in ferrets at various stages in development before the separation of the projections from the two eyes. A neuronal tracer was then injected into the damaged eye, defining the pattern of projection from that eye. As reported here, the lesion resulted in a limited interruption in the pattern of terminal label on both sides of the brain, demonstrating that terminals from each eye are arranged in an orderly retinotopic manner at this stage. hence, during later development, as one projection is reduced relative to the other, the two maps must slide in relation to each other.  相似文献   

12.
Involvement of visual cortex in tactile discrimination of orientation.   总被引:14,自引:0,他引:14  
A Zangaladze  C M Epstein  S T Grafton  K Sathian 《Nature》1999,401(6753):587-590
The primary sense modalities (vision, touch and so on) are generally thought of as distinct. However, visual imagery is implicated in the normal tactile perception of some object properties, such as orientation, shape and size. Furthermore, certain tactile tasks, such as discrimination of grating orientation and object recognition, are associated with activity in areas of visual cortex. Here we show that disrupting function of the occipital cortex using focal transcranial magnetic stimulation (TMS) interferes with the tactile discrimination of grating orientation. The specificity of this effect is illustrated by its time course and spatial restriction over the scalp, and by the failure of occipital TMS to affect either detection of an electrical stimulus applied to the fingerpad or tactile discrimination of grating texture. In contrast, TMS over the somatosensory cortex blocked discrimination of grating texture as well as orientation. We also report that, during tactile discrimination of grating orientation, an evoked potential is recorded over posterior scalp regions with a latency corresponding to the peak of the TMS interference effect (about 180 ms). The findings indicate that visual cortex is closely involved in tactile discrimination of orientation. To our knowledge, this is the first demonstration that visual cortical processing is necessary for normal tactile perception.  相似文献   

13.
A Dobbins  S W Zucker  M S Cynader 《Nature》1987,329(6138):438-441
Neurons in the visual cortex typically respond selectively to the orientation, and velocity and direction of movement, of moving-bar stimuli. These responses are generally thought to provide information about the orientation and position of lines and edges in the visual field. Some cells are also endstopped, that is selective for bars of specific lengths. Hubel and Wiesel first observed that endstopped hypercomplex cells could respond to curved stimuli and suggested they might be involved in detection of curvature, but the exact relationship between endstopping and curvature has never been determined. We present here a mathematical model relating endstopping to curvature in which the difference in response of two simple cells gives rise to endstopping and varies in proportion to curvature. We also provide physiological evidence that endstopped cells in area 17 of the cat visual cortex are selective for curvature, whereas non-endstopped cells are not, and that some are selective for the sign of curvature. The prevailing view of edge and curve determination is that orientations are selected locally by the class of simple cortical cells and then integrated to form global curves. We have developed a computational theory of orientation selection which shows that measurements of orientation obtained by simple cells are not sufficient because there will be strong, incorrect responses from cells whose receptive fields (RFs) span distinct curves (Fig. 1). If estimates of curvature are available, however, these inappropriate responses can be eliminated. Curvature provides the key to structuring the network that underlies our theory and distinguishes it from previous lateral inhibition schemes.  相似文献   

14.
Induction of visual orientation modules in auditory cortex   总被引:13,自引:0,他引:13  
Sharma J  Angelucci A  Sur M 《Nature》2000,404(6780):841-847
Modules of neurons sharing a common property are a basic organizational feature of mammalian sensory cortex. Primary visual cortex (V1) is characterized by orientation modules--groups of cells that share a preferred stimulus orientation--which are organized into a highly ordered orientation map. Here we show that in ferrets in which retinal projections are routed into the auditory pathway, visually responsive neurons in 'rewired' primary auditory cortex are also organized into orientation modules. The orientation tuning of neurons within these modules is comparable to the tuning of cells in V1 but the orientation map is less orderly. Horizontal connections in rewired cortex are more patchy and periodic than connections in normal auditory cortex, but less so than connections in V1. These data show that afferent activity has a profound influence on diverse components of cortical circuitry, including thalamocortical and local intracortical connections, which are involved in the generation of orientation tuning, and long-range horizontal connections, which are important in creating an orientation map.  相似文献   

15.
A Grinvald  E Lieke  R D Frostig  C D Gilbert  T N Wiesel 《Nature》1986,324(6095):361-364
Optical imaging of cortical activity offers several advantages over conventional electrophysiological and anatomical techniques. One can map a relatively large region, obtain successive maps to different stimuli in the same cortical area and follow variations in response over time. In the intact mammalian brain this imaging has been accomplished with the aid of voltage sensitive dyes. However, it has been known for many years that some intrinsic changes in the optical properties of the tissue are dependent on electrical or metabolic activity. Here we show that these changes can be used to study the functional architecture of cortex. Optical maps of whisker barrels in the rat and the orientation columns in the cat visual cortex, obtained by reflection measurements of the intrinsic signal, were confirmed with voltage sensitive dyes or by electrophysiological recordings. In addition, we describe an intrinsic signal originating from small arteries which can be used to investigate the communication between local neuronal activity and the microvasculature. One advantage of the method is that it is non-invasive and does not require dyes, a clear benefit for clinical applications.  相似文献   

16.
D Sagi  B Julesz 《Nature》1986,321(6071):693-695
There is increasing evidence that it is possible to shift an aperture of focal attention to a position in visual space independent of fixation and that this can be done much faster than the eyes are able to move. Recently, we showed that such serial scrutiny by the aperture of focal attention is required before an observer is able to tell what a target is (for example, to know whether the orientation of a line segment is horizontal or vertical). Here we considered whether attention directed towards a specific position in the visual field for an orientation discrimination task improves performance on a simple detection task in the area to which attention is directed. We found that a small test flash could be detected when it was positioned near a peripheral line target presented briefly, if the orientation of the target had to be identified. The test flash could not be detected when presented at some distance from the same target or when another target had to be identified. This enhancement implies that even simple identification tasks such as orientation discrimination are not performed passively by the visual system.  相似文献   

17.
在完备的度量空间中,利用泛函分析和集值映射的理论工具,研究了已有文献提出的一个问题并给出了正面回答,即建立了满足φ-弱压缩性质的2个多值映射的公共不动点定理,把公共不动点定理推广到了2个多值映射.  相似文献   

18.
文章首先介绍一种改进的求解旅行商问题的自组织映射算法,然后着重分析自组织网的不同参数对TSP问题解的影响,给出新的参数调整方法,使自组织映射算法获得更快的收敛速度及更好的解.  相似文献   

19.
Liu G  Seiler H  Wen A  Zars T  Ito K  Wolf R  Heisenberg M  Liu L 《Nature》2006,439(7076):551-556
The fly Drosophila melanogaster can discriminate and remember visual landmarks. It analyses selected parts of its visual environment according to a small number of pattern parameters such as size, colour or contour orientation, and stores particular parameter values. Like humans, flies recognize patterns independently of the retinal position during acquisition of the pattern (translation invariance). Here we show that the central-most part of the fly brain, the fan-shaped body, contains parts of a network mediating visual pattern recognition. We have identified short-term memory traces of two pattern parameters--elevation in the panorama and contour orientation. These can be localized to two groups of neurons extending branches as parallel, horizontal strata in the fan-shaped body. The central location of this memory store is well suited to mediate translational invariance.  相似文献   

20.
多级自组织映射用于心电信号QRS波群聚类   总被引:1,自引:0,他引:1  
提出了一种利用多级自组织映射(MSOM)网络进行心电QRS波群聚类的算法。此方法将归一化的两导联心电数据作为第一层自组织映射网络的输入,其输出作为第二层自组织映射的输入,最后得到聚类结果。网络迭代学习过程采用了特殊的设计,能根据不同类别自适应调整学习参数,从而提高了自组织映射的聚类能力。使用MIT-BIH数据库数据的聚类结果表明,这种方法非常适合心电QRS波群的聚类,对室性早搏(PVC)真阳性检出率达到99.1%,且聚类效率比ART-2网络方法、匹配方法有明显优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号