首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kuba H  Ishii TM  Ohmori H 《Nature》2006,444(7122):1069-1072
Neurons initiate spikes in the axon initial segment or at the first node in the axon. However, it is not yet understood how the site of spike initiation affects neuronal activity and function. In nucleus laminaris of birds, neurons behave as coincidence detectors for sound source localization and encode interaural time differences (ITDs) separately at each characteristic frequency (CF). Here we show, in nucleus laminaris of the chick, that the site of spike initiation in the axon is arranged at a distance from the soma, so as to achieve the highest ITD sensitivity at each CF. Na+ channels were not found in the soma of high-CF (2.5-3.3 kHz) and middle-CF (1.0-2.5 kHz) neurons but were clustered within a short segment of the axon separated by 20-50 microm from the soma; in low-CF (0.4-1.0 kHz) neurons they were clustered in a longer stretch of the axon closer to the soma. Thus, neurons initiate spikes at a more remote site as the CF of neurons increases. Consequently, the somatic amplitudes of both orthodromic and antidromic spikes were small in high-CF and middle-CF neurons and were large in low-CF neurons. Computer simulation showed that the geometry of the initiation site was optimized to reduce the threshold of spike generation and to increase the ITD sensitivity at each CF. Especially in high-CF neurons, a distant localization of the spike initiation site improved the ITD sensitivity because of electrical isolation of the initiation site from the soma and dendrites, and because of reduction of Na+-channel inactivation by attenuating the temporal summation of synaptic potentials through the low-pass filtering along the axon.  相似文献   

2.
Froemke RC  Merzenich MM  Schreiner CE 《Nature》2007,450(7168):425-429
Receptive fields of sensory cortical neurons are plastic, changing in response to alterations of neural activity or sensory experience. In this way, cortical representations of the sensory environment can incorporate new information about the world, depending on the relevance or value of particular stimuli. Neuromodulation is required for cortical plasticity, but it is uncertain how subcortical neuromodulatory systems, such as the cholinergic nucleus basalis, interact with and refine cortical circuits. Here we determine the dynamics of synaptic receptive field plasticity in the adult primary auditory cortex (also known as AI) using in vivo whole-cell recording. Pairing sensory stimulation with nucleus basalis activation shifted the preferred stimuli of cortical neurons by inducing a rapid reduction of synaptic inhibition within seconds, which was followed by a large increase in excitation, both specific to the paired stimulus. Although nucleus basalis was stimulated only for a few minutes, reorganization of synaptic tuning curves progressed for hours thereafter: inhibition slowly increased in an activity-dependent manner to rebalance the persistent enhancement of excitation, leading to a retuned receptive field with new preference for the paired stimulus. This restricted period of disinhibition may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.  相似文献   

3.
Genetic enhancement of learning and memory in mice.   总被引:118,自引:0,他引:118  
Hebb's rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.  相似文献   

4.
Pascoli V  Turiault M  Lüscher C 《Nature》2012,481(7379):71-75
Drug-evoked synaptic plasticity is observed at many synapses and may underlie behavioural adaptations in addiction. Mechanistic investigations start with the identification of the molecular drug targets. Cocaine, for example, exerts its reinforcing and early neuroadaptive effects by inhibiting the dopamine transporter, thus causing a strong increase in mesolimbic dopamine. Among the many signalling pathways subsequently engaged, phosphorylation of the extracellular signal-regulated kinase (ERK) in the nucleus accumbens is of particular interest because it has been implicated in NMDA-receptor and type 1 dopamine (D1)-receptor-dependent synaptic potentiation as well as in several behavioural adaptations. A causal link between drug-evoked plasticity at identified synapses and behavioural adaptations, however, is missing, and the benefits of restoring baseline transmission have yet to be demonstrated. Here we find that cocaine potentiates excitatory transmission in D1-receptor-expressing medium-sized spiny neurons (D1R-MSNs) in mice via ERK signalling with a time course that parallels locomotor sensitization. Depotentiation of cortical nucleus accumbens inputs by optogenetic stimulation in vivo efficiently restored normal transmission and abolished cocaine-induced locomotor sensitization. These findings establish synaptic potentiation selectively in D1R-MSNs as a mechanism underlying a core component of addiction, probably by creating an imbalance between distinct populations of MSNs in the nucleus accumbens. Our data also provide proof of principle that reversal of cocaine-evoked synaptic plasticity can treat behavioural alterations caused by addictive drugs and may inspire novel therapeutic approaches involving deep brain stimulation or transcranial magnetic stimulation.  相似文献   

5.
Mehta MR  Lee AK  Wilson MA 《Nature》2002,417(6890):741-746
In the vast majority of brain areas, the firing rates of neurons, averaged over several hundred milliseconds to several seconds, can be strongly modulated by, and provide accurate information about, properties of their inputs. This is referred to as the rate code. However, the biophysical laws of synaptic plasticity require precise timing of spikes over short timescales (<10 ms). Hence it is critical to understand the physiological mechanisms that can generate precise spike timing in vivo, and the relationship between such a temporal code and a rate code. Here we propose a mechanism by which a temporal code can be generated through an interaction between an asymmetric rate code and oscillatory inhibition. Consistent with the predictions of our model, the rate and temporal codes of hippocampal pyramidal neurons are highly correlated. Furthermore, the temporal code becomes more robust with experience. The resulting spike timing satisfies the temporal order constraints of hebbian learning. Thus, oscillations and receptive field asymmetry may have a critical role in temporal sequence learning.  相似文献   

6.
The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.  相似文献   

7.
提出并实现了一种小型、快速且稳定的八通道光子符合仪.此仪器采用高速ECL逻辑电路、FPGA可编程器件和USB2.0高速接口,能够同时统计八通道单光子检测器所有可能的单个或符合事件,且其平均处理速度最高可达到12.5 M事件/秒.此仪器在统计结果中还加入了辨别事件到达顺序的时间信息,再配合PC及其应用程序可实时监测八个通道中的任一路或符合事件.通过实时监测来调整单光子检测器及其前端的光路使其工作在最佳状态.同时此仪器还实现了不丢失地记录发生的间隔在13 ns(激光器的重复频率为76 MHz)时的事件.  相似文献   

8.
Royer S  Paré D 《Nature》2003,422(6931):518-522
Memory is believed to depend on activity-dependent changes in the strength of synapses. In part, this view is based on evidence that the efficacy of synapses can be enhanced or depressed depending on the timing of pre- and postsynaptic activity. However, when such plastic synapses are incorporated into neural network models, stability problems may develop because the potentiation or depression of synapses increases the likelihood that they will be further strengthened or weakened. Here we report biological evidence for a homeostatic mechanism that reconciles the apparently opposite requirements of plasticity and stability. We show that, in intercalated neurons of the amygdala, activity-dependent potentiation or depression of particular glutamatergic inputs leads to opposite changes in the strength of inputs ending at other dendritic sites. As a result, little change in total synaptic weight occurs, even though the relative strength of inputs is modified. Furthermore, hetero- but not homosynaptic alterations are blocked by intracellular dialysis of drugs that prevent Ca2+ release from intracellular stores. Thus, in intercalated neurons at least, inverse heterosynaptic plasticity tends to compensate for homosynaptic long-term potentiation and depression, thus stabilizing total synaptic weight.  相似文献   

9.
G Bi  M Poo 《Nature》1999,401(6755):792-796
Activity-dependent changes in synaptic efficacy or connectivity are critical for the development, signal processing and learning and memory functions of the nervous system. Repetitive correlated spiking of pre- and postsynaptic neurons can induce a persistent increase or decrease in synaptic strength, depending on the timing of the pre- and postsynaptic excitation. Previous studies on such synaptic modifications have focused on synapses made by the stimulated neuron. Here we examine, in networks of cultured hippocampal neurons, whether and how localized stimulation can modify synapses that are remote from the stimulated neuron. We found that repetitive paired-pulse stimulation of a single neuron for brief periods induces persistent strengthening or weakening of specific polysynaptic pathways in a manner that depends on the interpulse interval. These changes can be accounted for by correlated pre- and postsynaptic excitation at distant synaptic sites, resulting from different transmission delays along separate pathways. Thus, through such a 'delay-line' mechanism, temporal information coded in the timing of individual spikes can be converted into and stored as spatially distributed patterns of persistent synaptic modifications in a neural network.  相似文献   

10.
Harris KD  Csicsvari J  Hirase H  Dragoi G  Buzsáki G 《Nature》2003,424(6948):552-556
Neurons can produce action potentials with high temporal precision. A fundamental issue is whether, and how, this capability is used in information processing. According to the 'cell assembly' hypothesis, transient synchrony of anatomically distributed groups of neurons underlies processing of both external sensory input and internal cognitive mechanisms. Accordingly, neuron populations should be arranged into groups whose synchrony exceeds that predicted by common modulation by sensory input. Here we find that the spike times of hippocampal pyramidal cells can be predicted more accurately by using the spike times of simultaneously recorded neurons in addition to the animals location in space. This improvement remained when the spatial prediction was refined with a spatially dependent theta phase modulation. The time window in which spike times are best predicted from simultaneous peer activity is 10-30 ms, suggesting that cell assemblies are synchronized at this timescale. Because this temporal window matches the membrane time constant of pyramidal neurons, the period of the hippocampal gamma oscillation and the time window for synaptic plasticity, we propose that cooperative activity at this timescale is optimal for information transmission and storage in cortical circuits.  相似文献   

11.
A Rozov  N Burnashev 《Nature》1999,401(6753):594-598
At many glutamatergic synapses in the brain, calcium-permeable alpha - amino - 3 - hydro - 5 - methyl - 4 - isoxazolepropionate receptor (AMPAR) channels mediate fast excitatory transmission. These channels are blocked by endogenous intracellular polyamines, which are found in virtually every type of cell. In excised patches, use-dependent relief of polyamine block enhances glutamate-evoked currents through recombinant and native calcium-permeable, polyamine-sensitive AMPAR channels. The contribution of polyamine unblock to synaptic currents during high-frequency stimulation may be to facilitate currents and maintain current amplitudes in the face of a slow recovery from desensitization or presynaptic depression. Here we show, on pairs and triples of synaptically connected neurons in slices, that this mechanism contributes to short-term plasticity in local circuits formed by presynaptic pyramidal neurons and postsynaptic multipolar interneurons in layer 2/3 of rat neocortex. Activity-dependent relief from polyamine block of postsynaptic calcium-permeable AMPARs in the interneurons either reduces the rate of paired-pulse depression in a frequency-dependent manner or, at a given stimulation frequency, induces facilitation of a synaptic response that would otherwise depress. This mechanism for the enhancement of synaptic gain appears to be entirely postsynaptic.  相似文献   

12.
Chen X  Leischner U  Rochefort NL  Nelken I  Konnerth A 《Nature》2011,475(7357):501-505
The individual functional properties and spatial arrangement of afferent synaptic inputs on dendrites have a critical role in the processing of information by neurons in the mammalian brain. Although recent work has identified visually-evoked local dendritic calcium signals in the rodent visual cortex, sensory-evoked signalling on the level of dendritic spines, corresponding to individual afferent excitatory synapses, remains unexplored. Here we used a new variant of high-resolution two-photon imaging to detect sensory-evoked calcium transients in single dendritic spines of mouse cortical neurons in vivo. Calcium signals evoked by sound stimulation required the activation of NMDA (N-methyl-D-aspartate) receptors. Active spines are widely distributed on basal and apical dendrites and pure-tone stimulation at different frequencies revealed both narrowly and widely tuned spines. Notably, spines tuned for different frequencies were highly interspersed on the same dendrites: even neighbouring spines were mostly tuned to different frequencies. Thus, our results demonstrate that NMDA-receptor-dependent single-spine synaptic inputs to the same dendrite are highly heterogeneous. Furthermore, our study opens the way for in vivo mapping of functionally defined afferent sensory inputs with single-synapse resolution.  相似文献   

13.
Sumbre G  Muto A  Baier H  Poo MM 《Nature》2008,456(7218):102-106
The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.  相似文献   

14.
Losonczy A  Makara JK  Magee JC 《Nature》2008,452(7186):436-441
Although information storage in the central nervous system is thought to be primarily mediated by various forms of synaptic plasticity, other mechanisms, such as modifications in membrane excitability, are available. Local dendritic spikes are nonlinear voltage events that are initiated within dendritic branches by spatially clustered and temporally synchronous synaptic input. That local spikes selectively respond only to appropriately correlated input allows them to function as input feature detectors and potentially as powerful information storage mechanisms. However, it is currently unknown whether any effective form of local dendritic spike plasticity exists. Here we show that the coupling between local dendritic spikes and the soma of rat hippocampal CA1 pyramidal neurons can be modified in a branch-specific manner through an N-methyl-d-aspartate receptor (NMDAR)-dependent regulation of dendritic Kv4.2 potassium channels. These data suggest that compartmentalized changes in branch excitability could store multiple complex features of synaptic input, such as their spatio-temporal correlation. We propose that this 'branch strength potentiation' represents a previously unknown form of information storage that is distinct from that produced by changes in synaptic efficacy both at the mechanistic level and in the type of information stored.  相似文献   

15.
Ge S  Goh EL  Sailor KA  Kitabatake Y  Ming GL  Song H 《Nature》2006,439(7076):589-593
Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (gamma-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.  相似文献   

16.
Neuronal activity patterns contain information in their temporal structure, indicating that information transfer between neurons may be optimized by temporal filtering. In the zebrafish olfactory bulb, subsets of output neurons (mitral cells) engage in synchronized oscillations during odour responses, but information about odour identity is contained mostly in non-oscillatory firing rate patterns. Using optogenetic manipulations and odour stimulation, we found that firing rate responses of neurons in the posterior zone of the dorsal telencephalon (Dp), a target area homologous to olfactory cortex, were largely insensitive to oscillatory synchrony of mitral cells because passive membrane properties and synaptic currents act as low-pass filters. Nevertheless, synchrony influenced spike timing. Moreover, Dp neurons responded primarily during the decorrelated steady state of mitral cell activity patterns. Temporal filtering therefore tunes Dp neurons to components of mitral cell activity patterns that are particularly informative about precise odour identity. These results demonstrate how temporal filtering can extract specific information from multiplexed neuronal codes.  相似文献   

17.
Kreitzer AC  Malenka RC 《Nature》2007,445(7128):643-647
The striatum is a major forebrain nucleus that integrates cortical and thalamic afferents and forms the input nucleus of the basal ganglia. Striatal projection neurons target the substantia nigra pars reticulata (direct pathway) or the lateral globus pallidus (indirect pathway). Imbalances between neural activity in these two pathways have been proposed to underlie the profound motor deficits observed in Parkinson's disease and Huntington's disease. However, little is known about differences in cellular and synaptic properties in these circuits. Indeed, current hypotheses suggest that these cells express similar forms of synaptic plasticity. Here we show that excitatory synapses onto indirect-pathway medium spiny neurons (MSNs) exhibit higher release probability and larger N-methyl-d-aspartate receptor currents than direct-pathway synapses. Moreover, indirect-pathway MSNs selectively express endocannabinoid-mediated long-term depression (eCB-LTD), which requires dopamine D2 receptor activation. In models of Parkinson's disease, indirect-pathway eCB-LTD is absent but is rescued by a D2 receptor agonist or inhibitors of endocannabinoid degradation. Administration of these drugs together in vivo reduces parkinsonian motor deficits, suggesting that endocannabinoid-mediated depression of indirect-pathway synapses has a critical role in the control of movement. These findings have implications for understanding the normal functions of the basal ganglia, and also suggest approaches for the development of therapeutic drugs for the treatment of striatal-based brain disorders.  相似文献   

18.
Sakaba T  Neher E 《Nature》2003,424(6950):775-778
Second messenger cascades involving G proteins and calcium are known to modulate neurotransmitter release. A prominent effect of such a cascade is the downmodulation of presynaptic calcium influx, which markedly reduces evoked neurotransmitter release. Here we show that G-protein-mediated signalling, such as through GABA (gamma-amino butyric acid) subtype B (GABA(B)) receptors, retards the recruitment of synaptic vesicles during sustained activity and after short-term depression. This retardation occurs through a lowering of cyclic AMP, which blocks the stimulatory effect of increased calcium concentration on vesicle recruitment. In this signalling pathway, cAMP (functioning through the cAMP-dependent guanine nucleotide exchange factor) and calcium/calmodulin cooperate to enhance vesicle priming. The differential modulation of the two forms of synaptic plasticity, presynaptic inhibition and calcium-dependent recovery from synaptic depression, is expected to have interesting consequences for the dynamic behaviour of neural networks.  相似文献   

19.
Selective dendritic transport of RNA in hippocampal neurons in culture   总被引:1,自引:0,他引:1  
L Davis  G A Banker  O Steward 《Nature》1987,330(6147):477-479
Typical neurons of the central nervous system (CNS) elaborate tens of thousands of membrane specializations at sites of synaptic contacts on their dendrites. To construct, maintain, and modify these specializations, neurons must produce and deliver the appropriate molecular constituents to particular synaptic sites. Previous studies have revealed that polyribosomes are selectively positioned beneath postsynaptic sites, suggesting that in neurons, as in other cell types, protein synthetic machinery is located at or near the sites where particular proteins are needed. The mechanisms that deliver ribosomes and messenger RNA to their specific destinations in cells are therefore of considerable interest. Here we describe a system for RNA transport in dendrites that could provide a mechanism for the delivery of ribosomes and mRNA to synaptic sites in dendrites. Hippocampal neurons grown in culture incorporate 3H-uridine in the nucleus, then selectively transport the newly synthesized RNA into dendrites at a rate of about 0.5 mm day-1. The transport is inhibited by metabolic poisons, suggesting that it is an active, energy-dependent process. The RNA may be transported in association with the cytoskeleton.  相似文献   

20.
Letzkus JJ  Wolff SB  Meyer EM  Tovote P  Courtin J  Herry C  Lüthi A 《Nature》2011,480(7377):331-335
Learning causes a change in how information is processed by neuronal circuits. Whereas synaptic plasticity, an important cellular mechanism, has been studied in great detail, we know much less about how learning is implemented at the level of neuronal circuits and, in particular, how interactions between distinct types of neurons within local networks contribute to the process of learning. Here we show that acquisition of associative fear memories depends on the recruitment of a disinhibitory microcircuit in the mouse auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated cholinergic activation of layer 1 interneurons, in turn generating inhibition of layer 2/3 parvalbumin-positive interneurons. Importantly, pharmacological or optogenetic block of pyramidal neuron disinhibition abolishes fear learning. Together, these data demonstrate that stimulus convergence in the auditory cortex is necessary for associative fear learning to complex tones, define the circuit elements mediating this convergence and suggest that layer-1-mediated disinhibition is an important mechanism underlying learning and information processing in neocortical circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号