首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Naloxone in rats induces a behavioural syndrome closely resembling that induced by intraliquorally injected ACTH peptides. This effect is probably due to a displacement of the ACTH peptides from other receptors (e.g. opiate receptors).Acknowledgments. The authors are indebted to Dr M. J. Ferster of Endo Laboratories (Brussels) for the kind supply of naloxone. The excellent technical assistance of Mr Gianni Montorsi is gratefully acknowledged.  相似文献   

2.
The injection of ACTH 1--24 into the cerebral ventricles in rats markedly reduces the reaction time in the hot-plate test and the nociception threshold in the tail-stimulation test. Morphine antagonizes and naloxone potentiates this hyperalgesic effect of ACTH. It is proposed that ACTH peptides play a physiological role in nociception.  相似文献   

3.
Summary The injection of ACTH 1–24 into the cerebral ventricles in rats markedly reduces the reaction time in the hotplate test and the nociception threshold in the tail-stimulation test. Morphine antagonizes and naloxone potentiates this hyperalgesic effect of ACTH. It is proposed that ACTH peptides play a physiological role in nociception.  相似文献   

4.
Summary The depressor effects of natural and synthetic ACTH peptides were demonstrated in the rat. This is an extra-adrenal action of ACTH and is not related to the adrenal-stimulating or melanocyte-stimulating activity of the peptide.  相似文献   

5.
The effects of chronic ACTH treatment on the increase in the intracellular concentration of cyclic-AMP and cyclic-GMP acutely elicited by ACTH in the rat adrenal cortex were investigated. The results are consistent with the hypothesis that chronic ACTH treatment stimulates a) the de novo synthesis of adenylate- and guanylate-cyclase or b) the synthesis of new specific membrane receptors for ACTH.  相似文献   

6.
Summary The effects of chronic ACTH treatment on the increase in the intracellular concentration of cyclic-AMP and cyclic-GMP acutely elicited by ACTH in the rat adrenal cortex were investigated. The results are consistent with the hypothesis that chronic ACTH treatment stimulates a) the de novo synthesis of adenylate- and guanylate-cyclase or b) the synthesis of new specific membrane receptors for ACTH.Part of this work was presented at the 3rd International Conference on Cyclic Nucleotides, July 1977, New Orleans, Abstr. Book, p. 79.  相似文献   

7.
Endocrine cells producing regulatory peptides   总被引:1,自引:0,他引:1  
Recent data on the immunolocalization of regulatory peptides and related propeptide sequences in endocrine cells and tumors of the gastrointestinal tract, pancreas, lung, thyroid, pituitary (ACTH and opioids), adrenals and paraganglia have been revised and discussed. Gastrin, xenopsin, cholecystokinin (CCK), somatostatin, motilin, secretin, GIP (gastric inhibitory polypeptide), neurotensin, glicentin/glucagon-37 and PYY (peptide tyrosine tyrosine) are the main products of gastrointestinal endocrine cells; glucagon, CRF (corticotropin releasing factor), somatostatin, PP (pancreatic polypeptide) and GRF (growth hormone releasing factor), in addition to insulin, are produced in pancreatic islet cells; bombesin-related peptides are the main markers of pulmonary endocrine cells; calcitonin and CGRP (calcitonin gene-related peptide) occur in thyroid and extrathyroid C cells; ACTH and endorphins in anterior and intermediate lobe pituitary cells, alpha-MSH and CLIP (corticotropin-like intermediate lobe peptide) in intermediate lobe cells; met- and leu-enkephalins and related peptides in adrenal medullary and paraganglionic cells as well as in some gut (enterochromaffin) cells; NPY (neuropeptide Y) in adrenaline-type adrenal medullary cells, etc.. Both tissue-appropriate and tissue-inappropriate regulatory peptides are produced by endocrine tumours, with inappropriate peptides mostly produced by malignant tumours.  相似文献   

8.
ACTH and beta-endorphin have been evaluated by means of a specific and sensitive radioimmunoassay in athletes reaching a status of physical stress. A concomitant marked increase of these 2 peptides has been recorded. The implications of this finding lead to the conclusion that stress stimulates the synthesis of the common precursor (31 K) in the pituitary.  相似文献   

9.
The receptors for regulatory peptides have been extensively characterized using radioligand binding techniques. By combining these binding techniques with autoradiography it is possible to visualize at the light and electron microscopic levels the anatomical and cellular localization of these receptors. In this review we discuss the procedures used to label peptide receptors for autoradiography and the peculiarities of peptides as ligands. The utilization of autoradiography in mapping peptide receptors in brain and peripheral tissues, some of the new insights revealed by these studies particularly the problem of 'mismatch' between endogenous peptides and receptors, the existence of multiple receptors for a given peptide family and the use of peptide receptor autoradiography in human tissues are also reviewed.  相似文献   

10.
Summary Recent data on the immunologication of regulatory peptides and related propeptide sequences in endocrine cells and tumours of the gastrointestinal tract pancreas, lung, thyroid, pituitary (ACTH and opioids), adrenals and paraganglia have been revised and discussed. Gastrin, xenopsin, cholecystokinin (CCK), somatostatin, motilin, secretin, GIP (gastric inhibitory beenrevised and discussed. Gastrin, xenopsin, cholecystokinin (CCK), somatostatin, motilin, secretin, GIP (gastric inhibitory polypeptide), neurotensin, glicentin/glucagon-37 and PYY (peptide tyrosine tyrosine) are the main products of gastrointestinal endocrine cells; glucagon, CRF (corticotropin releasing factor), somatostatin, PP (pancreatic polypeptide) and GRF (growth hormone releasing factor), in addition to insulin, are produced in pancreatic islet cells; bombesin-related peptidesare the main markers of pulmonary endocrine cells; calcitonin and CGRP (calcitonin gene-related peptide) occur in thyroid and extrathyroid C cells; ACTH and endorphins in anterior and intermediate lobe pituitary cells, -MSH and CLIP (corticotropoin-like intermediate lobe peptide) in intermediate lobe cells; met- and leu-enkephalins and related peptides in adrenal medullary and paraganglionic cells as well as in some gut (enterochromaffin) cells; NPY (neuropeptide Y) in adrenalin-type adrenal medullary cells, etc.. Both tissue-appropriate and tissue-inappropriate regulatory peptides are produced by endocrine tumours, with inappropriate peptides mostly produced by malignant tumours.  相似文献   

11.
Bitter peptides and bitter taste receptors   总被引:1,自引:0,他引:1  
Bitter peptides are a structurally diverse group of oligopeptides often generated in fermented, aged, and hydrolyzed food products that make them unfavorable for consumption. Humans perceive bitterness by a repertoire of 25 human bitter receptors, termed T2Rs. Knowledge of the structural features of bitter receptors and of the factors that stimulate bitter receptors will aid in understanding the mechanism responsible for bitter taste perception. This article reviews the current knowledge regarding structural features of bitter peptides and bitter taste receptors. Received 24 November 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   

12.
To investigate the roles of adenosine A1 and A2 receptors in the regulation of aldosterone production, we examined the effects of adenosine and adenosine agonists (N6-cyclohexyl adenosine; selective adenosine A1 receptor agonist and 5'-N-ethylcarboxamine adenosine; selective adenosine A2 receptor agonist) on aldosterone and cyclic AMP production in rat adrenal capsular cells. Neither adenosine nor 5'-N-ethylcarboxamine adenosine caused significant effects on basal aldosterone or cyclic AMP production. Also, adenosine (10(-3) M) showed no consistent effects on aldosterone and cyclic AMP production induced by ACTH. On the other hand, N6-cyclohexyl adenosine exhibited a significant inhibition of basal aldosterone and cyclic AMP production at doses of 10(-4) M and 10(-3) M; furthermore, 10(-3) M N6-cyclohexyl adenosine inhibited aldosterone and cyclic AMP production stimulated by ACTH. These results suggest that adenosine A1 receptors are coupled to and inhibit adenylate cyclase and may be involved in the inhibition of aldosterone production.  相似文献   

13.
Summary ACTH and -endorphin have been evaluated by means of a specific and sensitive radioimmunoassay in athletes reaching a status of physical stress. A concomitant marked increase of these 2 peptides has been recorded. The implications of this finding lead to the conclusion that stress stimulates the synthesis of the common precursor (31 K) in the pituitary.  相似文献   

14.
Summary The receptors for regulatory peptides have been extensively characterized using radioligand binding techniques. By combining these binding techniques with autoradiography it is possible to visualize at the light and electron microscopic levels the anatomical and cellular localization of these receptors. In this review we discuss the procedures used to label peptide receptors for autoradiography and the peculiarities of peptides as ligands. The utilization of autoradiography in mapping peptide receptors in brain and peripheral tissues, some of the new insights revealed by these studies particularly the problem of mismatch between endogenous peptides and receptors, the existence of multiple receptors for a given peptide family and the use of peptide receptor autoradiography in human tissues are also reviewed.  相似文献   

15.
Endogenous opioids have been studied extensively since their discovery, in the hope of finding a perfect analgesic, devoid of the secondary effects of alkaloid opioids. However, the design of selective opioid agonists has proved very difficult. First, structural studies of peptides in general are hampered by their intrinsic flexibility. Second, the relationship between constitution and the so-called 'bioactive conformation' is far from obvious. Ideally, a direct structural study of the complex between a peptide and its receptor should answer both questions, but such a study is not possible, because opioid receptors are large membrane proteins, difficult to study by standard structural techniques. Thus, conformational studies of opioid peptides are still important for drug design and also for indirect receptor mapping. This review deals with conformational studies of natural opioid peptides in several solvents that mimic in part the different environments in which the peptides exert their action. None of the structural investigations yields a convincing bioactive conformation, but the global conformation of longer peptides in biomimetic environments can shed light on the interaction with receptors. Received 15 April 2001; received after revision 10 May 2001; accepted 11 May 2001  相似文献   

16.
The melanocortins are a family of bioactive peptides derived from proopiomelanocortin, and share significant structural similarity. Those peptides are best known for their stimulatory effects on pigmentation and steroidogenesis. Melanocortins are synthesized in various sites in the central nervous system and in peripheral tissues, and participate in regulating multiple physiological functions. Research during the past decade has provided evidence that melanocortins elicit their diverse biological effects by binding to a distinct family of G protein-coupled receptors with seven transmembrane domains. To date, five melanocortin receptor genes have been cloned and characterized. Those receptors differ in their tissue distribution and in their ability to recognize the various melanocortins and the physiological antagonists, agouti signaling protein and agouti-related protein. These advances have opened new horizons for exploring the significance of melanocortins, their antagonists, and their receptors in a variety of important physiological functions. Received 5 October 2000; accepted 10 November 2000  相似文献   

17.
The concept that atrial natriuretic peptide (ANP) and the closely related peptides BNP and CNP might be involved in the ontogeny of several organ systems emerged in the late 1980s. While many of the reported in vitro actions have not been examined in the context of organ development in vivo, recent studies demonstrate that mice which lack or overexpress natriuretic peptides or receptors exhibit pronounced skeletal growth defects. This article discusses how natriuretic peptides and other factors appear to regulate bone growth as an example of how natriuretic peptides might participate in the ontogeny of other organ systems. Evidence indicating that natriuretic peptides regulate neural development is then reviewed. Natriuretic peptides and receptors exhibit complex expression patterns in the developing nervous system, where they have been shown to act on neural cells as early as at the embryonic neural tube stage. Interestingly, both bone and brain growth appear to utilize primarily CNP and the CNP-specific type B receptor, and perhaps the type C receptor. In vitro data indicate that CNP may act on developing neurons, astrocytes and Schwann cells like a classical growth factor, regulating proliferation, patterning, phenotypic specification, survival and axonal pathfinding. Natriuretic peptides might also have roles in the vascularization of the embryonic brain, establishment of the blood-brain and blood-nerve barriers, and perhaps in nerve regeneration.Received 13 April 2004; received after revision 20 May 2004; accepted 27 May 2004  相似文献   

18.
Since its discovery in the 1920s, relaxin has enjoyed a reputation as a peptide hormone of pregnancy. However, relaxin and other relaxin family peptides are now associated with numerous non-reproductive physiologies and disease states. The new millennium bought with it the sequence of the human genome and subsequently new directions for relaxin research. In 2002, the ancestral relaxin gene RLN3 was identified from genome databases. The relaxin-3 peptide is highly expressed in a small region of the brain and in species from teleost to primates and has both conserved sequence and sites of expression. Combined with the discovery of the relaxin family peptide receptors, interest in the role of the relaxin family peptides in the central nervous system has been reignited. This review explores the relaxin family peptides that are expressed in or act upon the brain, the receptors that mediate their actions, and what is currently known of their functions.  相似文献   

19.
Although dopamine is considered the major hypothalamic controller of prolactin release from the anterior pituitary gland, there is evidence that a yet to be discovered prolactin releasing factor (PRF) also exists in brain. Recently, two peptides were isolated, products of the same prohormone, that were reported to have significant prolactin-releasing activity. These peptides, called prolactin releasing peptides, are not accepted by all investigators to be in fact PRFs. Instead, it appears that their widespread distribution in brain and the presence of receptors for the peptides in sites unrelated to neuroendocrine function are the basis for a variety of central nervous system action including activation of the autonomic nervous system. Thus, these peptides may not be PRFs, but instead neuroactive agents that are involved in many brain circuits with divergent functions.  相似文献   

20.
CAPA peptides have been isolated from a broad range of insect species as well as an arachnid, and can be grouped into the periviscerokinin and pyrokinin peptide families. In insects, CAPA peptides are the characteristic and most abundant neuropeptides in the abdominal neurohemal system. In many species, CAPA peptides exert potent myotropic effects on different muscles such as the heart. In others, including blood-sucking insects able to transmit serious diseases, CAPA peptides have strong diuretic or anti-diuretic effects and thus are potentially of medical importance. CAPA peptides undergo cell-type-specific sorting and packaging, and are the first insect neuropeptides shown to be differentially processed. In this review, we discuss the current knowledge on the structure, distribution, receptors and physiological actions of the CAPA peptides. Received 28 April 2006; received after revision 5 June 2006; accepted 4 July 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号