首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用熔体快淬及晶化退火工艺制备了Nd2Fe14B/α-Fe纳米晶双相材料,对该材料在0.5-18GHz频段的复介电常数、复磁导率进行了测试,其磁谱表现为驰豫型特征。由于磁损耗和介电损耗的共同作用,纳米复相Nd2Fe14B/α-Fe吸波材料在9—17GHz具有良好的吸波性能,其匹配厚度为1.6-2.5mm。  相似文献   

2.
为了提高纳米双相稀土永磁材料Nd2Fe14B/α-Fe的性能,研究了一种新型合金Nd9.0Fe85.5Nb1.0B4.0C0.5。在合金中添加碳可提高矫顽力,添加钕可细化晶粒;合金的淬态微观组织显著影响其磁性能,合金中的部分预析出微晶相有助于在随后的热处理中获得均匀的微观组织;在热处理工艺中,晶化退火温度和时间对合金微观组织结构具有显著影响,并影响合金的磁性能。使用原子力/磁力显微镜观察Nd-Fe-(BC)/α-Fe纳米复合磁体的微观组织及磁畴结构,并由此对纳米双相稀土永磁材料中的交换耦合作用进行了解释。结果表明,最佳热处理工艺为:700℃保温15min,其性能为:剩磁1.381Wb.m-2,矫顽力518.05kA.m-1,剩磁比0.74,最大磁能积137.75kJ.m-3。  相似文献   

3.
Nd2Fe14(BC)/α-Fe系稀土永磁材料微观组织及磁性能   总被引:4,自引:0,他引:4  
为了提高纳米双相稀土永磁材料Nd2Fe14B/α-Fe的性能,研究了一种新型合金Nd9.0Fe85.5Nb1.0B4.0C0.5. 在合金中添加碳可提高矫顽力,添加钕可细化晶粒; 合金的淬态微观组织显著影响其磁性能,合金中的部分预析出微晶相有助于在随后的热处理中获得均匀的微观组织; 在热处理工艺中,晶化退火温度和时间对合金微观组织结构具有显著影响,并影响合金的磁性能.使用原子力/磁力显微镜观察Nd-Fe-(BC)/α-Fe纳米复合磁体的微观组织及磁畴结构,并由此对纳米双相稀土永磁材料中的交换耦合作用进行了解释.结果表明,最佳热处理工艺为 700 ℃保温15 min, 其性能为 剩磁1.381 Wb*m-2, 矫顽力518.05 kA*m-1, 剩磁比0.74, 最大磁能积137.75 kJ*m-3.  相似文献   

4.
用熔体快淬 晶化处理(RQC)工艺制备了Nd2Fe14B/α-Fe纳米复合材料,研究晶化热处理温度和时间对Nd7.5Fe86B6.5纳米复合材料磁性能的影响.结果表明: 快淬速度为25m/s时制备的Nd7.5Fe86B6.5合金薄带的最佳热处理工艺为700℃保温10min; 快淬速度为30m/s时制备的Nd7.5Fe86B6.5合金薄带的最佳热处理工艺为700℃保温15min,并达到最佳磁性能; 在相同晶化温度下,非晶化程度越高的样品,所需的晶化时间越长; 晶化热处理时不仅要完全消除磁体内的非晶相,而且要使晶粒的尺寸尽可能的小.  相似文献   

5.
纳米复合永磁材料的原始淬态组织对最终的显微组织结构和磁性有着决定性的影响,为了弄清其影响规律,研究了成分为Pr7Fe88B5的双相纳米复合永磁材料的淬态组织在回火时相转变的过程和晶化后的组织结构及磁性.X射线谱和Mossbauer谱的研究结果表明,在不同辊速下制得的快淬带样品的组织结构是不同的.原始淬态组织的不同导致回火时的不同相变过程,它们分别是(1)非晶相Am+Pr2Fe14B+α-Fe→Pr2Fe14B+α-Fe;(2)非晶相Am+α-Fe→(Am)′+α-Fe→α-Fe+1:7相+Pr2Fe14B→Pr2Fe14B+α-Fe;(3)Am→Am′+α-Fe→1:7相+α-Fe→Pr2Fe14B+α-Fe.虽然样品最终的相组成均为α-Fe和Pr2Fe14B,但不同原始态的样品晶化后的显微组织和磁性并不相同.  相似文献   

6.
纳米复合永磁材料的原始淬态组织对最终的显微组织结构和磁性有着决定性的影响,为了弄清其影响规律,研究了成分为Pr7Fe88B5的双相纳米复合永磁材料的淬态组织在回火时相转变的过程和晶化后的组织结构及磁性。X射线谱和Mossbauer谱的研究结果表明,在不同辊速下制得的快淬带样品的组织结构是不同的。原始淬态组织的不同导致回火时的不同相变过程,它们分别是(1)非晶相Am Pr2Fe14B α-Fe→Pr2Fe14B α-Fe;(2)非晶相Am α-Fe→(Am)′ α-Fe→α-Fe 1:7相+Pr2Fe14B→Pr2Fe14B α-Fe;(3)Am→Am′+α-Fe→1:7相+α-Fe→Pr2Fe14B α-Fe。虽然样品最终的相组成均为α-Fe和Pr2Fe14B,但不同原始态的样品晶化后的显微组织和磁性并不同相同。  相似文献   

7.
一、引言Nd2Fe14B/α-Fe双相复合纳米晶永磁材料不仅具有潜在的超高磁能积,而且具有良好的耐腐蚀性和力学性能,应用前景广阔。目前,关于这类磁体的研究焦点在于磁体的致密化和磁各向异性化。这两个问题的突破对于材料的实用化具有重要意义。近年来,一系列新型纳米材料制备新技术的出现和快速发展对于纳米材料的研制起到重要的推动作用。在关于  相似文献   

8.
Nb对快淬Nd10Fe84B6合金微观组织和磁性能的影响   总被引:1,自引:0,他引:1  
研究了添加Nb对快淬Nd10Fe84B6合金磁性能、微观组织和晶化温度的影响.结果表明:添加Nb可以提高快淬态合金中非晶相的热稳定性,减小最佳退火温度和晶化起始温度之间的温度差,抑制热处理时α-Fe和Nd2Fe14B晶粒的预先析出和长大,有效细化了晶粒,提高磁性能.快淬Nd10Fe83Nb1B6合金经过715℃热处理10 min,磁性能达到Br=0.90 T,iHc=750 kA/m,(BH)max=120 kJ/m3,较之Nd10Fe84B6合金,内禀矫顽力提高了25%,最大磁能积提高了14%.  相似文献   

9.
采用熔体快淬法在不同快淬速度下制备了Nd8Fe86B6合金中Nd2Fe14B/α-Fe双相复合纳米晶薄带.用X射线衍射仪(XRD)和振动样品磁强计(VSM)测量了薄带的相结构和磁性能.结果表明:Nd8Fe86B6合金的最佳快淬速度为18m/s,在此条件下制备的合金薄带平均晶粒尺寸细小.综合磁性能好;合金薄带的平均晶粒尺寸为24.4nm,磁性能为Br=0.69T。Br/Bs=0.66。Hc=296.1kA/m.  相似文献   

10.
研究了热处理气氛对快淬Nd10Fe79Zr1Co4B6合金相组成和磁性能的影响.结果表明:Nd10Fe79Zr1Co4B6快淬合金薄带在热处理时通入氮气会发生吸氮反应,相结构由纯氩气热处理时的Nd2Fe14B和α-Fe两相组织转变为Nd2Fe14B、NdBN2和α-Fe三相组织,且随着氮气分压的提高,热处理后样品中α-Fe相和NdBN2相的体积分数逐渐增多.Nd10Fe79Zr1Co4B6样品的剩磁Br、内禀矫顽力iHc和最大磁能积(BH)m ax随着热处理时氮气分压的提高而下降.  相似文献   

11.
基于纳米金属膜电导率和介电性的理论基础,采用0.05~5 GHz 宽频带扫频测量所得的复磁导率,计算分析电导率对具有不同微波磁谱特性的纳米磁性金属膜吸波性能的影响.研究结果表明具有较高磁导率的纳米磁性膜,当其电导率低于100 S/m 时,该薄膜材料在微米级厚度时就具有良好的吸波性能,即在0.05~5 GHz 的宽频段反射率小于-4 dB;降低薄膜电导率可以显著改善薄膜吸波材料的电磁匹配性能,从而提高其吸波性能.  相似文献   

12.
纳米材料是80年代中期发展起来的新型材料,具有独特的磁、光、电等特性。1984年美国通用汽车公司推出采用熔体快淬工艺制备Nd—Fe—B磁粉的方法,两年后发现快淬Nd—Fe—B合金存在剩磁增长现象。到90年代初,大量研究表明,剩磁增大与晶粒细化到纳米级有关。在纳米晶Nd—Fe—B基永磁材料中,最具发展潜力的是交换耦合的复合水磁材料。  相似文献   

13.
采用单辊快凝法取代传统的铸锭法制备出了厚度为0.1~0.4mm的NdFeB厚带.通过对制备快凝厚带过程中不同的工艺参数的探索,获得了工艺参数、带片厚度及显微组织间的关系.结果表明:制备0.25~0.35mm厚带的最佳工艺参数为:辊轮转速在10m/s左右,喷射压力0.08~0.10MPa,辊嘴间距(2±0.5)mm.当带片厚度为0.3mm时,带片中以Nd2Fe14B相为主,沿着(410)方向Nd2Fe14B含量比例较大;其显微结构主要是Nd2Fe14B片状晶,富Nd薄层相之间的间距约为5 μm.带片厚度为0.4mm时,厚带试样中α-Fe含量明显大于Nd2Fe14B含量,并且择优取向变成了(008).厚度0.1 mm的厚带的显微结构中是细小的急冷等轴晶,厚度0.4mm的厚带中有较大区域的等轴晶.  相似文献   

14.
利用X射线衍射(X-ray diffraction,XRD)分析仪、振动样品磁强计(vibrating sample magnetometer,VSM)和差示扫描量热仪(differential scanning calorimeter,DSC),研究了非晶Nd9.5Fe76Co5Ti3B6.5合金条带晶化过程中Nd_2Fe_(14)B/α-Fe析出相的相结构及其磁性能的变化.结果表明,在晶化过程中Nd_2Fe_(14)B相和α-Fe相分别在600,680?C退火时析出.随着退火温度的升高,α-Fe相的晶粒比Nd_2Fe_(14)B相长大更明显:当温度由690?C升高到700?C时,α-Fe相及Nd_2Fe_(14)B相的晶粒尺寸分别由22.4,32.8 nm长大到33.3,39.8 nm.在690?C退火时,硬磁相Nd_2Fe_(14)B和软磁相α-Fe之间具有较强的交换耦合作用,其晶粒尺寸分别为32.8,22.4 nm.此时的合金具有最佳的综合磁性能:剩磁强度Br=0.88 T,矫顽力Hci=523.76 k A/m,最大磁能积(BH)max=100.01 k J/m~3.  相似文献   

15.
Dy2O3掺杂对纳米锂铁氧体微波吸收特性的影响   总被引:3,自引:0,他引:3  
采用机械合金化的方法制备纳米晶 L i Fe5O8和 L i Fe4.994Dy0 .0 0 6O8,在不同温度下进行热处理 ,并研究了它们的吸波性能 .实验结果表明 :Li Fe5O8在 7~ 1 2 GHz频段内有三个吸收峰 ,具有一定的吸波性能 .当加入少量的 Dy2 O3 后 ,吸收峰的位置发生了变化 ,其吸波性能得到显著的提高 .它是一种有发展前景的吸波材料  相似文献   

16.
研究了F360系列的电磁式漏电断路器中FeSiCuNbB纳米晶软磁磁芯的非晶晶化过程.研究发现,快淬薄带淬态组织以非晶相为主,含有少量α-Fe(Si)晶化相;合金非晶晶化过程存在两个阶段,分别对应于α-Fe(Si)相和Fe2B相析出,其晶化激活能分别为291.16kJ/mol和430.88 kJ/mol;磁芯经过510℃晶化处理后,获得最佳综合磁性能,满足了电磁式漏电断路器的要求.  相似文献   

17.
采用单辊快淬法制备Fe75Nb8B15Zr2非晶合金,对该非晶合金进行不同温度的等温退火,研究其晶化过程及结构变化.利用示差热分析仪(DTA)确定样品的退火温度,利用X射线衍射(XRD)测试其相结构.结果表明:Fe75Nb8B15Zr2合金在快淬速率为38m/s时呈完全非晶状态,随着退火温度的升高,α-Fe相逐渐析出,并伴随有硼化物(Fe3B和Fe2B)析出.Fe75Nb8B15Zr2非晶合金的晶化过程:非晶→非晶+α-Fe→α-Fe+Fe3B→α-Fe+Fe3B+Fe2B.  相似文献   

18.
为了研究烧结NdFeB永磁体在激光焊接条件下的冶金行为,利用2kW连续光纤激光器对N48H永磁体进行了激光点焊,分析了"深熔"和"热导"两种激光焊接模式下焊点的显微组织特征,并对显微组织的形成机理进行了初步分析。结果表明:两种焊接模式下热影响区(HAZ)中均存在液化裂纹,熔合区均由Nd2Fe14B相和α-Fe相组成,熔核内部均为亚μm的Nd2Fe14B超细等轴晶。深熔焊熔核上表面有密集生长的α-Fe柱状枝晶,而热导焊没有;深熔焊时富Nd相在熔核上表面外围富集,热导焊时富Nd相在熔核上表面中心富集。不同焊接模式下,不同的温度场及熔池流动行为是形成接头区不同显微组织的根本原因。  相似文献   

19.
采用化学共沉淀法制备了Mn0.6Zn0.4Fe2O4和α-Fe2O3纳米微粉,进而利用陶瓷工艺制备了(Mn0.6Zn0.4Fe2O4)1-x/(α-Fe2O3)x纳米晶复合块体材料.详细研究了(Mn0.6Zn0.4Fe2O4)1-x/(α-Fe2O3)x样品的相结构、磁学性质和电阻率的温度依赖性.研究发现在Mn0.6Zn0.4Fe2O4中掺入适量的α-Fe2O3可改善材料的高频软磁性能,也可改善样品电阻率的温度灵敏度.从而为锰锌铁氧体性能的改善提供了新的线索.  相似文献   

20.
采用单辊熔体快淬法将名义成分为Nd7.5Fe92.5-xBx(x=4.5,5.5,6.5,7.5at.%)的母合金制备成Nd2Fe14B/α—Fe纳米晶双相复合稀土永磁合金薄带.对母合金和合金薄带的磁性能进行对比分析,并分别讨论了合金中硼含量与快淬速度对合金薄带磁性能及薄带厚度的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号