首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对于自动获得尺寸的内圆磨床来说,热变形是一种重要的系统性误差来源。由于机床的热源众多,结构复杂,使变形状态也非常复杂,增加了温升及变形计算上的困难。本文应用多级发热理论近似地解决上述计算问题,并推导出由热变形所引起的加工误差的计算公式。文中还应用尺寸链原理分析了M228半自动内圆磨床在磨削过程中的机床热变形对加工精度的影响。机床温升、温度场及热变形量的测定结果表明,整台机床有较大的温差,主要热源是液压部件及磨杆轴承,由于床身及磨杆等部件同时热变形,使主轴及磨杆的相对位置在受热过程中远离,因而使工件尺寸趋大。这与实验尺寸点图是一致的。为了降低甚至消除热变形的影响,将床身下部的油箱移出机床,并隔绝油缸的热影响,结果床身热变形以及系统性误差大大降低。通过实验,证实了上述误差分析和计算方法是正确的。所采取的消除热变形的措施是有效的。可以作为改进机床设计的参考。  相似文献   

2.
热误差补偿技术是提高机床加工精度经济有效的方法,确定最佳关键温度测点布置位置和数目将极大提高机床热误差模型的精度和鲁棒性。针对一台立式加工中心,进行了机床热误差测量试验,根据其温度场,提出了模糊聚类与信息论相结合的方法,寻找最佳温度测点布置位置。该方法根据温度变量间的相似性,对温度变量聚类分组,然后利用互信息法对组内变量单独寻优,实现温度测点优化布置,最后利用多元线性回归分析建立机床热误差预测模型。在VMC1165立式加工中心进行了试验验证,温度测点减少为4个,热误差模型的拟合最大残差降低到5μm以内,相对于其他方法进一步提高机床热误差预测精度。  相似文献   

3.
该文分析了数控卧式车床热误差对机床加工精度的影响。利用红外热像仪、位移传感器和温度传感器记录热误差数据,建立热误差模型和热误差补偿系统。利用红外热图像和相关分析,对关键测温点的位置进行了优化。然后,建立了车床主轴径向(X方向)热误差的线性回归模型。实验结果表明:线性回归模型是鲁棒的,适用于机床热误差建模。利用线性回归模型开发了基于Siemens828D型数控系统及S7-300PLC(可编程逻辑控制器)的热误差补偿系统。检测结果表明:轴径向热误差由原来的10μm减少到5μm以内,精度提高50%以上。  相似文献   

4.
针对主要基于受综合因素影响的机床本体温度所建立的热误差模型鲁棒性较差的问题.综合考虑机床本体温度、动力源转速、冷却液温度及环境温度提出了多变量关联热误差组合模型.将最小二乘支持向量机(LS-SVM)的方法运用到热误差建模中,并利用偏最小二乘(PLS)方法提取输入变量的主成分作为LS-SVM的输入,形成PLS-LSSVM组合热误差模型.此外根据数控加工过程及材料热变形原理,将相对起始温度的差温值作为温度输入,使热误差补偿更加准确.在某型号精密加工中心进行实验验证,结果表明:PLS-LSSVM模型比LS-SVM更稳定,比PLSR预测精度高;考虑差温多变量的PLS-LSSVM模型较单纯考虑机床本体测量温度值的PLS-LSSVM~*模型,热误差预测值的均方根误差(RMSE)平均减少了5.5μm.  相似文献   

5.
为降低机床加工过程中温度场变化对机床加工精度的影响,分析了数控机床生产过程中热源组成及热误差产生机理,根据灰色关联度理论从原设定的8个温度测量点中计算选定4个机床温度关键测量点,建立了灰色GM(1,4)预测模型。该模型搭建了4个关键测温点的温度变化情况与机床热误差值之间的映射关系,能在生产过程通过获取关键点温度实时预测机床热误差值,再通过数控系统将预测值补偿到刀具进给位置,以此形成机床热误差补偿机制。最后,以精密卧式加工中心THM6380为实验对象,检验GM(1,4)模型预测结果与实际热误差值间的差距,拟合残差在±1μm以内,拟合效果良好。  相似文献   

6.
为了提高大型数控机床的光栅定位精度,提出了基于热特性分析的光栅定位热误差建模理论及补偿方法.阐述了光栅受热膨胀产生热伸长从而导致定位偏差的机理,并对光栅定位误差产生的影响及表现形式进行了说明.建立了光栅热伸长量和温升量的线性关系表达式.在光栅尺上均匀布置多个温度传感器,实时采集光栅尺多点温度,通过插值运算,拟合出光栅尺各点的温度值.由于在机床运动过程中,光栅尺各点的温升量不尽相同,采用对光栅尺各点温升量积分的方法,求出光栅各点热伸长量,建立了光栅定位热误差模型.利用自主研发的数控机床误差补偿系统,应用光栅定位热误差模型,对落地镗床TK6920进行光栅尺定位热误差补偿.结果显示:光栅定位热误差模型对运动过程中的光栅定位误差进行准确的预测,补偿后残差控制在15μm以内,定位精度提升90%以上,显著提高了光栅的定位精度.  相似文献   

7.
在机床设计阶段,首先运用CAD软件建立几何模型;然后生成中间文件并导入CAE软件,进行机床结构热分析,通过后处理提取出运动轴导轨位置处的结构热变形误差;最后利用多体理论将结构热变形引起的单轴热误差转化为机床工作空间的热误差,进而预测由于机床结构热变形而引起的机床末端刀尖点-工件的相对位姿误差.仿真分析算例表明该方法具有可行性,对机床热平衡设计具有指导意义.  相似文献   

8.
基于有限元法的机床导轨热特性研究   总被引:1,自引:0,他引:1  
以往机床导轨热特性分析主要通过传统的计算方法得到导轨热变形的解析解,并没有考虑热源移动对导轨热变形的影响,因此计算结果并不十分精确.应用有限元法,建立导轨的有限元模型,考虑移动热源的影响,对模型进行数值模拟,得到导轨的温度场,并在此基础上得到导轨的热变形量.由于移动热源的影响,与稳态分析所得变形量相差2.52μm.导轨达到热平衡所需时间为1.25 h.由于热变形的影响,导轨在水平面的最大直线度误差为5.03μm,导轨表面的最大倾斜度误差为0.000 218 9°.研究结果为分析导轨热变形对加工精度的影响提供了参考,进而为机床的误差补偿提供了理论依据.  相似文献   

9.
针对数控机床几何误差源的辨识问题,研究了基于球杆仪测量信息的机床几何误差源快速辨识方法.采用多项式模型描述机床几何误差源,建立了几何误差源与球杆仪杆长误差之间的线性映射模型.提出一种球杆仪空间误差检测轨迹,该测量轨迹使得球杆仪仅需一次安装即可实现大范围的空间测量.基于该轨迹上的误差测量数据,利用岭回归方法辨识出机床几何误差源全集.仿真与实验结果均验证了所提辨识方法的准确性与有效性,基于激光干涉仪测量方法的验证实验表明,球杆仪辨识结果与激光干涉仪测量结果的偏差在2.3,μm以下.  相似文献   

10.
机床误差的正交光栅检测及分离   总被引:3,自引:1,他引:2  
提出一种提出了利用平面正交光栅进行几何误差检测的方法。以CINCINNATI750三坐标立式加工中心为对象,建立了包含21项几何误差的数控机床误差分离模型以分离出机床的单向误差。所提出的误差参数分离模型可以推广到多轴数控机床的误差分析上。测量实验表明该误差分离模型是可行的。该方法具有测量精度高,误差参数分离准确的特点。  相似文献   

11.
针对数控机床热误差变化复杂而难以用常规方法预测的问题,将温升过程的热误差按不同的误差因素分解为静态基准误差和温升影响误差2个部分,分别建模并叠加生成热误差整体预测模型;利用所建模型对一台典型三轴数控铣床进行热误差预测;同时,结合自主研发的误差实时补偿系统,采用模型预测值对机床热误差进行实时补偿.结果表明:所提出的模型可以准确预测温升过程中任意温度的变化状态和坐标位置的热误差;模型预测值对机床热误差的补偿效果显著,可大幅降低热误差对加工精度的影响.  相似文献   

12.
提出了一种基于时间序列算法的机床热误差建模方法.通过时序算法综合分析软件,对实测的热误差数据进行预处理、模式识别、模型参数估计、循环定阶判别以及模型整合,建立表征机床热误差变化规律的实时补偿模型,并通过判别温度变化趋势,实时调整模型迭代系数.通过实时补偿系统,利用所建立的热误差补偿模型对数控机床的热漂移误差进行实时补偿加工.结果表明,工件的径向尺寸误差从补偿前最大的112μm降低到7μm,机床加工精度和稳定性大幅度提高.  相似文献   

13.
数控机床在加工过程中,由于机床部件受到环境温度、摩擦热和切削热等因素影响导致温度升高而发生变形,部件之间原来的相对位置发生改变,相对运动的正确性被破坏.机床部件尺寸的变化使得数控机床精度降低,造成工件加工过程中的热变形误差.在分析产生机床热误差原理的基础上,探讨了热误差的测量方法,并利用多元线性回归方程建立机床热变形和温升之间的数学模型,利用误差补偿技术进行修正,从而减小机床热变形造成的被加工工件的尺寸误差.  相似文献   

14.
基于直接插补的变比齿扇插齿加工研究   总被引:5,自引:2,他引:3  
在具体研究了机床变温变形特性的基础上,提出了基于神经网络确定机床热误差补偿的温度监测及控制源位置的基本思想和具体实现方法,从而为最佳控制源及温度监测点位置 选择提供了新的思路及手段,实际应用及实验结果证明了该方法的可行性。  相似文献   

15.
以大型机床热误差补偿为研究列标、以大型龙门机床为研究对象,开发了温度热误差检测系统,实测了机床的热误差和温度场,并利用热误差及温度变量间的相关性,选取了建模温度变量,采用多元回归,建立了Z向热误差模型,并预测了后续热误差的变化。预测结果有效地将热误差带宽从60μm降为18μm,有效证明预测的可行性。  相似文献   

16.
针对主轴热误差对机床精度稳定性产生严重影响的问题,提出了一种基于传热理论及热变形机理的主轴热误差预测模型.首先,基于传热机理分析推导出主轴系统的实时温度场模型.然后,根据机床结构尺寸对主轴热变形进行机理分析,并利用物理建模法得到温度场与热误差的关系.最后,在两台同类型的立式加工中心上进行主轴热误差仿真和实验验证.结果表明:主轴热误差模型的平均预测精度达到了95.0%,这证明了该模型具有很高的精度和强鲁棒性.  相似文献   

17.
基于蚁群算法的机床热误差建模技术   总被引:4,自引:0,他引:4  
通过分析机床热变形机制,采用蚁群算法对BP神经网络的权值进行训练,得到一种新的仿生预测模型,并将该模型应用于Y3150K型滚齿机中进行热误差补偿实验,使滚刀主轴的热变形误差控制在6 μm以内.结果表明,该模型不但避免了BP神经网络算法易于陷入局部极小的缺陷,且其预测能力较强、鲁棒性更佳,大幅提高了热误差补偿精度.  相似文献   

18.
机床床身作为数控机床的基础支撑件之一,其静态性能对机床性能有重要影响。为得到单个部件的静态性能对整机的影响,以CLFH-200齿轮复合机床床身为研究对象,提出了一种针对机床单个部件性能与整机性能相联系的分析方法,采用Solidworks软件建立整机模型,运用ANSYS Workbench软件建立刚柔耦合有限元模型,利用双因素优选法确定机床床身最佳分析位置,选取刀具位移为静力学分析观测值。结果表明:由床身形变引起的刀具位移为0.004 85 mm,床身最大应力在材料许用应力范围。本文研究为机床单个部件的设计和优化提供了参考。  相似文献   

19.
热误差是影响机床加工精度的主要误差项.为了快速检测机床自身热误差,在研究机床综合误差和球杆仪检测原理的基础上,提出了一种快速有效的检测方法——球杆仪法.通过建立三轴数控机床的几何误差和热误差的综合误差模型,提出机床的几何误差和热误差的检测及分离方法,并对影响加工精度较大的主轴与Z导轨的平行度误差、标尺热变形导致的比例误差以及滚珠丝杠变形导致的周期性误差等主要热误差项进行了球杆仪圆轨迹测试法的模拟仿真,通过进行球杆仪检测实验,测得机床空载时的主轴端热漂移误差,得到其变化规律曲线.相对于传统热误差检测法,该方法简捷有效.  相似文献   

20.
针对机床几何误差与零件误差映射关系建模方法并未考虑刀具在加工过程中各个点位的位置偏差与姿态偏差的问题,以三轴机床为研究对象,首先利用多体系统运动学理论,建立机床刀尖点误差与刀轴矢量误差模型。然后利用单基站激光跟踪仪多次测量的方法,结合误差分离算法,辨识得到了机床的21项几何误差项,并对18项与位置有关的误差项进行拟合,构建了完整的典型三轴机床工作空间误差场。最后以凸台宽度、平面度、孔轴线位置度等典型特征,结合加工轨迹,建立起机床几何误差与尺寸误差、形状误差和位置误差的映射关系,并进行了相应的实验验证。实验结果表明:凸台宽度误差与机床刀尖点在该处的几何误差有关,11个点位的凸台宽度误差测量值与计算值相差在5μm以内;"之"字型铣削平面度误差分析要先进行刀具轨迹离散化,然后将刀具圆周离散化,计算刀具圆周含有误差的点,通过点位筛选原则,选择真正属于加工表面的点,对这些点利用最小二乘法计算平面度,平面度误差计算值与测量值相差2μm以内;孔轴线位置度误差分析要考虑钻孔过程中不同位置处刀尖点误差与刀轴姿态误差,以二者为基础构建孔轴线方程,通过代入检测平面的高度以获取相应高度处圆心偏差,孔轴线位置度误差计算值与测量值相差5μm以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号