首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Asellus aquaticus L. cerebral ganglions and nervous cord contain seven types of neurosecretory cells; two of these are similar to Malacostraca beta and alpha cells. Female beta cells are the seat of cyclic acidophil variations which are connected to ovocyte growing; this acidophil secretion is superimposed on the basophil constant secretion in male and female beta pericaryons.  相似文献   

2.
It is now relatively well accepted that the cerebrovascular system does not merely provide inert pipes for blood delivery to the brain. Cerebral endothelial cells may compose an embedded bunker of trophic factors that contribute to brain homeostasis and function. Recent findings suggest that soluble factors from cerebral endothelial cells nourish neighboring cells, such as neurons and astrocytes. Although data are strongest in supporting mechanisms of endothelial-neuron and/or endothelial-astrocyte trophic coupling, it is likely that similar interactions also exist between cerebral endothelial cells and oligodendrocyte lineage cells. In this mini-review, we summarize current advances in the field of endothelial-oligodendrocyte trophic coupling. These endothelial-oligodendrocyte interactions may comprise the oligovascular niche to maintain their cellular functions and sustain ongoing angiogenesis/oligodendrogenesis. Importantly, it should be noted that the cell–cell interactions are not static—the trophic coupling is disturbed under acute phase after brain injury, but would be recovered in the chronic phase to promote brain remodeling and repair. Oligodendrocyte lineage cells play critical roles in white matter function, and under pathological conditions, oligodendrocyte dysfunction lead to white matter damage. Therefore, a deeper understanding of the mechanisms of endothelial-oligodendrocyte trophic coupling may lead to new therapeutic approaches for white matter-related diseases, such as stroke or vascular dementia.  相似文献   

3.
Summary There is now considerable evidence implicating several peptides in the control of gastrointestinal epithelial cell proliferation and cell renewal. While some of these may act directly, many may be involved in regulating the powerful trophic effects of the intake and digestion of foold on the gut epithelium.—Several peptides have been associated with the regulation of intestinal cell proliferation. There is little doubt that gastrin is trophic to the stomach, but, its role in the rest of the gastrointestinal tract is debatable. Enteroglucagon has often been associated with increased intestinal epithelial proliferation, but at the moment all the evidence for this is circumstantial. The effects of peptide YY and bombesin warrant further study. The availability of recombinant epidermal growth factor (EGF) has recently enabled us to demonstrate a powerful trophic response to infused EGF throughout the gastrointestinal tract. The increasing availability of peptides will eventually allow the rigorous in vivo evaluation of the trophic role of these potentially very important peptides.  相似文献   

4.
Peptides and epithelial growth regulation   总被引:1,自引:0,他引:1  
There is now considerable evidence implicating several peptides in the control of gastrointestinal epithelial cell proliferation and cell renewal. While some of these may act directly, many may be involved in regulating the powerful trophic effects of the intake and digestion of food on the gut epithelium. Several peptides have been associated with the regulation of intestinal cell proliferation. There is little doubt that gastrin is trophic to the stomach, but, its role in the rest of the gastrointestinal tract is debatable. Enteroglucagon has often been associated with increased intestinal epithelial proliferation, but at the moment all the evidence for this is circumstantial. The effects of peptide YY and bombesin warrant further study. The availability of recombinant epidermal growth factor (EGF) has recently enabled us to demonstrate a powerful trophic response to infused EGF throughout the gastrointestinal tract. The increasing availability of peptides will eventually allow the rigorous in vivo evaluation of the trophic role of these potentially very important peptides.  相似文献   

5.
Recent advances in understanding the cellular and molecular basis of psychiatric illnesses have shed light on the important role played by trophic factors in modulating functional parameters associated with disease causality and drug action. Disease mechanisms are now thought to involve multiple cell types, including neurons and endothelial cells. These functionally distinct but interactively coupled cell types engage in cellular cross talk via shared and common signaling molecules. Dysregulation in their cellular signaling pathways influences brain function and alters behavioral performance. Multifunctional trophic factors such as VEGF and EPO that possess both neurotrophic and angiogenic actions are of particular interest due to their ability to rescue structural and plasticity deficits in neurons and vasculature. Obtaining insight into the behavioral, cellular and molecular actions of multi-functional trophic factors has the potential to open new and transformative therapeutic approaches.  相似文献   

6.
P J Chan  I Henig  D R Tredway 《Experientia》1988,44(9):774-775
The dibutyryl analog of cCMP enlarged the nuclei of trophoblast giant cells and promoted blastocyst development. The result suggests that cCMP has a trophic effect on embryonic development, specifically by altering the size of the trophoblast cell nucleus but does not enhance trophoblast cell proliferation processes.  相似文献   

7.
Summary The dibutyryl analog of cCMP enlarged the nuclei of trophoblast gian cells and promoted blastocyst development. The result suggests that cCMP has a trophic effect on embryonic development, specifically by altering the size of the trophoblast cell nucleus but does not enhance trophoblast cell proliferation processes.  相似文献   

8.
The long-term (trophic) influence of perivascular nerves on the endothelium was investigated by measuring changes in thrombin-stimulated release of the potent vasoconstrictor, endothelin, after selective chronic denervation. Rat pups were treated with either guanethidine or capsaicin to destroy sympathetic or sensory nerves, respectively. The abdominal aortas from the rats at three months of age (5 pooled per experiment) were incubated with 4U thrombin/ml in medium for 24 h at 37°C, and the amount of endothelin released from the preparation determined by immunoassay. After neonatal sensory denervation there was a significant reduction in the thrombinstimulated release of endothelin compared to the controls (0.012±0.012 (4) compared to 0.063±0.012 (6), pmol/cm2/24 h, p<0.02). There was no change in endothelin release after sympathetic denervation. In summary, sensory nerves play a trophic role in the expression of endothelin in endothelial cells of the intima.  相似文献   

9.
Summary Bovine pancreatic polypeptide increases DNA-synthesis in the rat pancreas; no effect is observed in stomach (oxyntic area), duodenum or liver. BPP neither augments or inhibits the trophic action of cholecystokinin.Acknowledgment. Pure pancreatic polypeptide was donated by Dr. R. E. Chance (Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Ind, USA). G. R. Greenberg is supported by a Fellowship of the Medical Research Council of Canada.  相似文献   

10.
Summary White rats submitted to a purified diet without vitamin A develop normally with carotene. When these animals are treated with thiouracil they show trophic alterations analogous to these observed in animals submitted to a diet without vitamine or provitamine A. These disturbances are cured immediately when vitamine A or powdered thyroids are given; on the other hand they continue when the dose of carotene is augmented. Iodine too exercises a protective and curative effect with an antagonistic action to thiouracil.The authors interpret these disturbances as due to an inhibition of the carotinase produced by thiouracil.  相似文献   

11.
The goal of this article is twofold: 1) It aims at providing an overview on some major results obtained from energy flow studies in individuals, populations, and communities, and 2) it will also focus on major mechanisms explaining community structures. The basis for any biological community to survive and establish a certain population density is on the one hand energy fixation by primary producers together with adequate nutrient supply and the transfer of energy between trophic levels (bottom-up effect). On the other hand, predator pressures may strongly control prey population densities one or more trophic levels below (top-down effect). Other interpopulation effects include competition, chemical interactions and evolutionary genetic processes, which further interact and result in the specific structuring of any community with respect to species composition and population sizes.  相似文献   

12.
Summary Azadirachtin A, an insect growth inhibitor derived from neem seed, when injected at a physiological dose, inhibits the hormonally controlled ovarian development inLocusta migratoria. Its tritiated dihydro derivative concentrates more in the corpus cardiacum than in the brain. Translocation and release of the neurosecretory proteins labeled with L-[35S]-cysteine in the corpus cardiacum is very poor in locusts under azadirachtin stress. It is concluded that azadirachtin may influence the release of trophic hormones from the corpus cardiacum leading to alterations in timing and titer of morphogenetic hormone pools.  相似文献   

13.
Coexistence of peptides with classical neurotransmitters   总被引:7,自引:0,他引:7  
In the present article the fact is emphasized that neuropeptides often are located in the same neurons as classical transmitters such as acetylcholine, 5-hydroxy-tryptamine, catecholamines, gamma-aminobutyric acid (GABA) etc. This raises the possibility that neurons produce, store and release more than one messenger molecule. The exact functional role of such coexisting peptides is often difficult to evaluate, especially in the central nervous system. In the periphery some studies indicate apparently meaningful interactions of different types with the classical transmitter, but other types of actions including trophic effects have been observed. More recently it has been shown that some neurons contain more than one classical transmitter, e.g. 5-HT plus GABA, further underlining the view that transfer of information across synapses may be more complex than perhaps hitherto assumed.  相似文献   

14.
The neuropeptide galanin is widely, but not ubiquitously, expressed in the adult nervous system. Its expression is markedly upregulated in many neuronal tissues after nerve injury or disease. Over the last 10 years we have demonstrated that the peptide plays a developmental survival role to subsets of neurons in the peripheral and central nervous systems with resulting phenotypic changes in neuropathic pain and cognition. Galanin also appears to play a trophic role to adult sensory neurons following injury, via activation of GalR2, by stimulating neurite outgrowth. Furthermore, galanin also plays a neuroprotective role to the hippocampus following excitotoxic injury, again mediated by activation of GalR2. In summary, these studies demonstrate that a GalR2 agonist might have clinical utility in a variety of human diseases that affect the nervous system.  相似文献   

15.
Stem cell therapy in stroke   总被引:2,自引:1,他引:1  
Recent work has focused on cell transplantation as a therapeutic option following ischemic stroke, based on animal studies showing that cells transplanted to the brain not only survive, but also lead to functional improvement. Neural degeneration after ischemia is not selective but involves different neuronal populations, as well as glial and endothelial cell types. In models of stroke, the principal mechanism by which any improvement has been observed, has been attributed to the release of trophic factors, possibly promoting endogenous repair mechanisms, reducing cell death and stimulating neurogenesis and angiogenesis. Initial human studies indicate that stem cell therapy may be technically feasible in stroke patients, however, issues still need to be addressed for use in human subjects. Received 23 June 2008; received after revision 24 September 2008; accepted 30 September 2008  相似文献   

16.
Neuropeptide Y: the universal soldier   总被引:13,自引:0,他引:13  
The peptidic neurotransmitter neuropeptide Y (NPY) has received great attention because it has been implicated in the regulation of several organ systems. In particular, NPY is involved in the regulatory loops that control food intake in the hypothalamus and appears also to be important for regulating the activity of neuroendocrine axes under poor metabolic conditions. Furthermore, NPY exerts vasoconstrictive action on the vasculature and potentiates the actions of many other vasoconstrictors. In addition, it was demonstrated to have trophic properties and could therefore contribute to cardiovascular remodeling. These various effects plus a number of others make NPY an attractive target for the potential treatment of human diseases, such as obesity, metabolic disorders, hypertension and heart failure. Received 17 July 2002; received after revision 7 November 2002; accepted 29 November 2002 RID="*" ID="*"Corresponding author.  相似文献   

17.
Vascular endothelial growth factors (VEGFs), initially thought to act specifically on the vascular system, exert trophic effects on neural cells during development and adulthood. Therefore, the VEGF system serves as a promising therapeutic target for brain pathologies, but its simultaneous action on vascular cells paves the way for harmful side effects. To circumvent these deleterious effects, many studies have aimed to clarify whether VEGFs directly affect neural cells or if the effects are mediated secondarily via other cell types, like vascular cells. A great number of reports have shown the expression and function of VEGF receptors (VEGFRs), mainly VEGFR-1 and -2, in neural cells, where VEGFR-2 has been described as the major mediator of VEGF-A signals. This review aims to summarize and compare the divergent roles of VEGFR-1 and -2 during CNS development and homeostasis.  相似文献   

18.
Regulatory peptides in the respiratory system   总被引:2,自引:0,他引:2  
P J Barnes 《Experientia》1987,43(7):832-839
Many regulatory peptides have been described in the respiratory tract of animals and humans. Some peptides (bombesin, calcitonin, calcitonin gene-related peptide) are localised to neuroendocrine cells and may have a trophic or transmitter role. Others are localised to motor nerves. Vasoactive intestinal peptide and peptide histidine isoleucine are candidates for neurotransmitters of non-adrenergic inhibitory fibres and may be cotransmitters in cholinergic nerves. These peptides may regulate airway smooth muscle tone, bronchial blood flow and airway secretions. Sensory neuropeptides (substance P, neurokinin A and B, calcitonin gene-related peptide) may contract airway smooth muscle, stimulate mucus secretion and regulate bronchial blood flow and microvascular permeability. If released by an axon reflex mechanism these peptides may be involved in the pathogenesis of asthma. Other peptides, such as galanin and neuropeptide Y, are also present but their function is not yet known.  相似文献   

19.
Summary Many regulatory peptides have been described in the respiratory tract of animals and humans. Some peptides (bombesin, calcitonin, calcitonin gene-related peptide) are localised to neuroendocrine cells and may have a trophic or transmitter role. Others are localised to motor nerves. Vasoactive intestinal peptide and peptide histidine isoleucine are candidates for neurotransmitters of non-adrenergic inhibitory fibres and may be cotransmitters in cholinergic nerves. These peptides may regulate airway smooth muscle tone, bronchial blood flow and airway secretions. Sensory neuropeptides (substance P, neurokinin A and B, calcitonin gene-related peptide) may contract airway smooth muscle, stimulate mucus secretion and regulate bronchial blood flow and microvascular permeability. If released by an axon reflex mechanism these peptides may be involved in the pathogenesis of asthma. Other peptides, such as galanin and neuropeptide Y, are also present but their function is not yet known.  相似文献   

20.
Coexistence of peptides with classical neurotransmitters   总被引:4,自引:0,他引:4  
Summary In the present article the fact is emphasized that neuropeptides often are located in the same neurons as classical transmitters such as acetylcholine, 5-hydroxy-tryptamine, catecholamines, -aminobutyric acid (GABA) etc. This raises the possibility that neurons produce, store and release more than the one messenger molecule. The exact functional role of such coesisting peptides is often difficult to evaluate, especially in the central nervous system. In the periphery some studies indicate apparently meaningful interactions of different types with the classical transmitter, but other types of actions including trophic effects have been observed. More recently it has been shown that some neurons contain more than one classical transmitter, e.g. 5-HT plus GABA, further underlining the view that transfer of information across synapses may be more compex than perhaps hitherto assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号