首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
颉凯平 《科学技术与工程》2013,13(19):5504-5507
由于"当前"统计模型自适应滤波算法对于最大加速度的过分依赖,使其对于弱机动目标并不具有较高的跟踪精度,基于"当前"统计模型自适应滤波算法的研究及目标跟踪性能的分析,提出了将目标的机动状态划分为强机动和弱机动,当目标在作弱机动运动时,可通过修正最大加速度来提高跟踪精度,分别针对常速、常加速、弱变加速三种弱机动情况进行了数学仿真,仿真结果表明,通过修正最大加速度的方法,可使该算法对于弱机动目标的跟踪精度大大提高。  相似文献   

2.
概括了在目标跟踪中常用的几种滤波算法,从目标模型建立到滤波器的算法原理进行了分析和归纳。这些算法各有特点.在不同的情况下它们的跟踪精度、实时性有很大差异。针对一种典型的目标运动,对其中有代表性的算法进行数据仿真,分析和验证了这几种典型滤波算法各项性能的差别。  相似文献   

3.
一种改进的MNVS自适应滤波算法   总被引:1,自引:0,他引:1  
提出一种改进的归一化变步长自适应滤波算法(ANVS),它对归一化变步最小均方误差自适应乍法(MNVS)作了进一步的改进,使之既具有愉收敛速度,又有快速跟踪能力,计算机仿真结果表明,该算法的性能明显优于MNVS算法,而其计算量与MNVS算法相当。  相似文献   

4.
基于似然函数的自适应Singer模型滤波算法   总被引:1,自引:0,他引:1  
Singer模型滤波算法可以对机动目标进行有效跟踪,但其模型参数的确定依赖于先验知识,且一旦确定,将在滤波过程中不再变化.因此,当事先确定的参数与目标机动不匹配时,跟踪精度会变得比较差.针对模型参数失配时,传统Singer模型不能有效跟踪机动目标的问题,提出一种自适应Singer模型滤波算法.在滤波过程中,构造多模型的模型似然函数,并随着滤波过程实时计算模型似然函数,根据似然函数的变化,自适应调整Singer模型加速度参数.仿真表明,该算法能够有效跟踪目标不同的机动情况,滤波效果较固定参数的Singer模型算法和离散自适应Singer模型算法更优.  相似文献   

5.
提出一类改进的粒子滤波算法.对于建议分布的选取方案,此算法采取强跟踪分散的卡尔曼滤波方式建立它的建议分布.由于线性调节参数,此算法让系统拥有更优越的自适应性及鲁棒性,对高机动目标具有更强的跟踪效果,继而为强跟踪扩展卡尔曼滤波的能力.仿真结论说明,此算法的性能比别的几类非线性滤波算法更加优秀.比如辅助粒子滤波器(APF)、迭代扩展卡尔曼粒子滤波器(IEKF-PF)、Unscented粒子滤波器(UPF)、正则化粒子滤波器(RPF),则是在bootstrap粒子滤波器提出之后,继而出现的改进的粒子滤波器0基于粒子滤波,本文提出了阻止粒子退化的两个重点原因,以及选取合适的采样建议分布及重采样算法.  相似文献   

6.
讨论了机动目标跟踪问题,针对机动目标并行自适应滤波特点,结合粗神经网络特有的同一神经元可以双输入的特点,利用全状态反馈,提出了基于“当前”统计模型的粗神经网络并行自适应滤波算法,仿真表明该算法对机动目标具有较强的跟踪能力。  相似文献   

7.
针对粒子滤波算法时间复杂度高的问题,引入一种在滤波过程中粒子数可以根据过程噪声方差大小进行调整的自适应粒子滤波算法,即KLD-Sampling粒子滤波算法.该算法在保证一定滤波精度的前提下,可以有效地减少滤波过程中使用的粒子数,从而减小滤波时间,提高滤波效率.此外,分析了该算法中距离阈值和小区域阈值的选取与参与滤波粒子数的关系及其对算法性能的影响.仿真实验对分析结果进行了验证.  相似文献   

8.
基于机动频率自适应的目标跟踪算法   总被引:7,自引:1,他引:7       下载免费PDF全文
利用观测新息在目标机动时发生变化的信息,设计了一种自适应的机动目标跟踪算法,通过对目标状态误差的估计,从而自适应的改变机动频率,使跟踪算法与目标的真实状态更接近,该算法具有运算量小、跟踪精度高、易于工程化实现的特点。  相似文献   

9.
马照英  杨莘元  杨雷 《应用科技》2006,33(6):49-50,109
多个测量站(多雷达或多传感器)工作时,在时间上是不同步的.在融合之前必须将这些观测数据进行同步.在某雷达单独观测时,采用通常的卡尔曼滤波方法;在多雷达重叠观测区,采用序贯滤波方法,不管是哪个传感器观测,按时间顺序,先到的量测点先进行滤波,这样就省去了时间同步这一步处理,又增强了航迹的连续性.计算机仿真证明了该方法的有效性.  相似文献   

10.
对一类较一般的非线性系统,依据把状态量增大的方法(扩维法),新息性质和输出相关法的思想,提出了一种自适应简化非线性滤波算法与许多同类算法相比,它具有简捷性,有效性和精确性,适合于军事工程技术中的实现计算。  相似文献   

11.
滤波理论的最新进展及其在导航系统中的应用   总被引:5,自引:0,他引:5  
系统介绍了近年来滤波理论研究中出现的各种主要的滤波方法 ,指出了各自的优势、缺陷和发展前景。针对导航系统自身的特点 ,介绍了与之相关的几种新的滤波算法 ,阐述了各自的性能特点和应用前途。分析探讨了作为滤波理论未来发展方向的最优非线性滤波和自适应滤波的一些可能的发展途径 ,估计了其中存在的主要困难和问题 ,为将来的研究工作指明了方向  相似文献   

12.
针对机动目标跟踪问题,在截断正态概率密度模型的基础上,通过目标机动状况与相邻采样时刻间位置估计量变化之间的函数关系实现噪声方差自适应调整,提出了一种新的自适应滤波算法——基于截断正态概率密度模型修正的自适应滤波算法。计算机仿真结果表明,该算法在跟踪机动目标时,具有良好的跟踪性能,并极大地改善了跟踪非机动目标的能力。  相似文献   

13.
多传感器远距离目标跟踪精度分析   总被引:2,自引:0,他引:2  
该文主要研究了非线性系统中多传感器远距离目标跟踪问题,提出了分布的转换坐标卡尔曼滤波算法,给出了当多传感器不在同一位置时融合中心的状态估计组合公式。  相似文献   

14.
硬件增强角速率圆锥优化算法的姿态解算精度分析及改进   总被引:1,自引:0,他引:1  
在分析传统硬件增强角速率圆锥优化算法姿态解算精度的基础上,提出了一种改进的算法,对传统算法中的周期分量进行了二次优化.首先通过分析传统算法的各轴分量相对于旋转矢量变化量的真值以及理想值的误差来确定算法的姿态解算精度,然后根据经典圆锥运动建立二次优化的误差准则并推导了相应的二次优化系数,最后在不同的经典圆锥运动环境下对传统算法以及改进算法的姿态解算精度进行仿真对比.结果表明,对传统算法的姿态解算精度的分析是正确合理的,而且只需采用改进的三子样算法就可以获得与根据理想值得到的结果几乎完全一致的姿态解算精度.  相似文献   

15.
为解决基于“当前”统计模型的自适应滤波器对弱机动,特别是非机动目标跟踪精度下降问题,提出基于模糊神经网络的目标自适应跟踪算法,对并行工作的两滤波器进行数据融合.仿真结果表明:与一般自适应算法相比,该算法对各种机动程度的目标跟踪精度均有不同程度的提高,能更好地适应目标的各种运动形式,尤其适用于对目标的速度和加速度估计精度要求较高的场合,在指控、火控系统中具有实用价值.  相似文献   

16.
为了解决电视跟踪系统中电视脱靶量的滞后以及跳变对控制系统的稳定性和跟踪精度的影响。根据跟踪系统实时性和精度要求,设计了卡尔曼滤波器,对跟踪目标运动参数(位置和速度)进行滤波预测,提出了极坐标下Kalman滤波算法。仿真结果表明,该滤波器能够根据传感器测量值对目标位置、速度进行估值,超调量减至18%,调整时间为0.6s。  相似文献   

17.
推广的卡尔曼滤波器能根据雷达测量数据较好地跟踪飞行弹丸,并估计出有用参数,但动态方程和量测方程的线性化会给滤波和估值带来一定的误差。该文讨论了用单步迭代滤波来降低动态方程的线性化给弹丸跟踪滤波器带来的滤波和估值误差。  相似文献   

18.
On the basis of studying the standard TCP retransmission mechanism,this paper proposes a method to adopt the theory of adaptive filtering in the field for the estimation of round trip time (RTT).Then t...  相似文献   

19.
激光三角法测距位移传感器因其具有非接触测量、测量速度快等特点,所以在测量与检测领域有广泛的应用。为了提高激光位移传感器的测量精度,从传感器测距原理入手分析影响系统测量精度的诸多因素,提出一种避免死循环的Sage-Husa滤波算法提高测量精度。最后结合LS—100CP型激光位移传感器与MATLAB进行实验仿真,同时与常规的Kalman滤波算法相比较,得出改进的Sage-Husa滤波算法精度较高且在激光三角法测量中的应用切实可行,有较好的实用价值。  相似文献   

20.
针对单目标跟踪滤波性能评价标准,分析研究均方根误差、误差适配百分比、和方根误差、带有理论边界的状态误差、带有理论边界的新息序列、归一化估计误差平方和具有理论边界的归一化信息平方.针对多目标跟踪滤波性能评价标准,分析研究圆丢失概率、Hausdorff距离、Was-serstein距离和最优子模型分配距离.并讨论跟踪滤波算法时间复杂度的度量方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号