共查询到20条相似文献,搜索用时 15 毫秒
1.
A common assumption in non-relativistic quantum mechanics is that self-adjoint operators mathematically represent properties of quantum systems. Focusing on spin, we argue that a natural view considers observables as determinable properties and their eigenvalues as their corresponding determinates. We provide a taxonomy of the different views that one can hold, once it is accepted that spin can be modelled with the determinable-determinate relation. In particular, we present the two main families of views, dubbed Spin Monism and Pluralism, and we show that the current literature does not take a stance between the two. Then we put forward two arguments in favour of the former. Finally, we present a new account of Spin Monism, that is absent in current literature; such a view is worth discussing, or so we contend, because several compelling considerations support it, and it opens new ways of thinking about the ontology of quantum mechanics. 相似文献
2.
Meir Hemmo Orly Shenker 《Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics》2005,36(4):389
In a previous paper [Hemmo, M & Shenker, O (2003). Quantum decoherence and the approach to equilibrium I. Philosophy of Science, 70, 330–358] we discussed a recent proposal by Albert [(2000). Time and chance. Cambridge, MA: Harvard University Press. Chapter 7] to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the quantum state of [Ghirardi, G, Rimini, A and Weber, T., (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review, D 34, 470–479]. We proposed an alternative way to explain thermodynamics within no collapse interpretations of quantum mechanics. In this paper some difficulties faced by both approaches are discussed and solved: the spin echo experiments, and the problem of extremely light gases. In these contexts, we point out several ways in which the above quantum mechanical approaches as well as some other classical approaches to the foundations of statistical mechanics may be distinguished experimentally. 相似文献
3.
One of the key philosophical questions regarding quantum field theory is whether it should be given a particle or field interpretation. The particle interpretation of QFT is commonly viewed as being undermined by the well-known no-go results, such as the Malament, Reeh-Schlieder and Hegerfeldt theorems. These theorems all focus on the localizability problem within the relativistic framework. In this paper I would like to go back to the basics and ask the simple-minded question of how the notion of quanta appears in the standard procedure of field quantization, starting with the elementary case of the finite numbers of harmonic oscillators, and proceeding to the more realistic scenario of continuous fields with infinitely many degrees of freedom. I will try to argue that the way the standard formalism introduces the talk of field quanta does not justify treating them as particle-like objects with well-defined properties. 相似文献
4.
I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie–Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general view of inter-theoretic reduction in physics that I have elaborated elsewhere, which differs from the oversimplified picture that treats reduction as a matter of simply taking limits. This interpretation-neutral account rests on a general three-pronged strategy for reduction between quantum and classical theories that combines decoherence, an appropriate form of Ehrenfest׳s Theorem, and a decoherence-compatible mechanism for collapse. It also incorporates a novel argument as to why branch-relative trajectories should be approximately Newtonian, which is based on a little-discussed extension of Ehrenfest׳s Theorem to open systems, rather than on the more commonly cited but less germane closed-systems version. In the Conclusion, I briefly suggest how the strategy for quantum-classical reduction described here might be extended to reduction between other classical and quantum theories, including classical and quantum field theory and classical and quantum gravity. 相似文献
5.
Armond Duwell 《Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics》2011,42(3):167-175
In this paper I critically evaluate the justification of the von Neumann–Lüders projection postulate for state changes in projective measurement contexts from the objective quantum Bayesian perspective. I point out that the justification provided so far for the von Neumann–Lüders projection postulate is insufficient. I argue that the best way to correct this problem is to make an assumption, Benign Realism, which is contradictory to the objective quantum Bayesian interpretation of quantum states. 相似文献
6.
Veiko Palge Thomas Konrad 《Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics》2008,39(2):273-287
Quantum mechanics is a theory whose foundations spark controversy to this day. Although many attempts to explain the underpinnings of the theory have been made, none has been unanimously accepted as satisfactory. Fuchs has recently claimed that the foundational issues can be resolved by interpreting quantum mechanics in the light of quantum information. The view proposed is that quantum mechanics should be interpreted along the lines of the subjective Bayesian approach to probability theory. The quantum state is not the physical state of a microscopic object. It is an epistemic state of an observer; it represents subjective degrees of belief about outcomes of measurements. The interpretation gives an elegant solution to the infamous measurement problem: measurement is nothing but Bayesian belief updating in a analogy to belief updating in a classical setting. In this paper, we analyze an argument that Fuchs gives in support of this latter claim. We suggest that the argument is not convincing since it rests on an ad hoc construction. We close with some remarks on the options left for Fuchs’ quantum Bayesian project. 相似文献
7.
Fritz London's seminal idea of “quantum mechanisms of macroscopic scale”, first articulated in 1946, was the unanticipated result of two decades of research, during which London pursued quantum-mechanical explanations of various kinds of systems of particles at different scales. He started at the microphysical scale with the hydrogen molecule, generalized his approach to chemical bonds and intermolecular forces, then turned to macrophysical systems like superconductors and superfluid helium. Along this path, he formulated a set of concepts—the quantum mechanism of exchange, the rigidity of the wave function, the role of quantum statistics in multi-particle systems, the possibility of order in momentum space—that eventually coalesced into a new conception of systems of equal particles. In particular, it was London's clarification of Bose-Einstein condensation that enabled him to formulate the notion of superfluids, and led him to the recognition that quantum mechanics was not, as it was commonly assumed, relevant exclusively as a micromechanics. 相似文献
8.
There are three kinds of sources available to reconstruct the reflections that led Einstein to special relativity: a few contemporary letters and documents, his impersonal accounts of the genesis of this theory, and recollections of his own path. At first glance, contradictions within and between these sources hamper the reliability of Einstein’s accounts. Yet, a closer analysis reveals much more consistency than foreseen and helps eliminate the dubious, contradictory elements. It then becomes possible to combine the three kinds of sources to produce a minimally speculative and yet fairly coherent account of the genesis of special relativity. 相似文献
9.
James Mattingly 《Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics》2007,38(4):888-905
I display, by explicit construction, an account of the Aharonov–Bohm effect that employs only locally operative electrodynamical field strengths. The terms in the account are the components of the magnetic field of the solenoid at the location of electron, and even though the total field vanishes there, the components do not. That such a construction can be carried out demonstrates at least that whatever virtues they have for understanding and constructing new field theories, gauge fields in general make no metaphysical demands, and commit us to no novel ontology. I reflect on the significance of this for our understanding of quantum time-evolution and conclude that we should think of quantized matter as interacting individually with the other matter in the systems of which it is a part. 相似文献
10.
量子计算机是基于微观体系的量子力学性质——叠加性和纠缠性,对信息进行逻辑运算、存储传输的新型计算装置。通过运行基于量子硬件的量子算法,量子计算机解决某些复杂数学问题的速度和效率可大幅度超越经典计算机,对未来科技发展和国家战略竞争起着至关重要的作用。离子阱是通用量子计算机的主流技术之一,同时也对量子物理学的发展发挥过关键作用。本文围绕离子阱量子计算机的发展现状与趋势展开论述。首先回顾离子阱量子计算发展历史;接着介绍离子囚禁关键技术的现状以及趋势;然后重点介绍分布式离子阱量子计算机,分析离子-光子纠缠、分布式量子计算,以及基于离子阱量子计算机的量子互联网络等技术前沿;并介绍了离子阱量子计算产业发展,包括核心专利、研究机构、企业与融资、市场与生态等;最后,对离子阱量子计算机科研和产业发展提出政策建议。 相似文献
11.
12.
《Studies in history and philosophy of science》2013,44(4):563-570
Recent literature in the scientific realism debate has been concerned with a particular species of statistical fallacy concerning base-rates, and the worry that no matter how predictively successful our contemporary scientific theories may be, this will tell us absolutely nothing about the likelihood of their truth if our overall sample space contains enough empirically adequate theories that are nevertheless false. In response, both realists and anti-realists have switched their focus from general arguments concerning the reliability and historical track-records of our scientific methodology, to a series of specific arguments and case-studies concerning our reasons to believe individual scientific theories to be true. Such a development however sits in tension with the usual understanding of the scientific realism debate as offering a second-order assessment of our first-order scientific practices, and threatens to undermine the possibility of a distinctive philosophical debate over the approximate truth of our scientific theories. I illustrate this concern with three recent attempts to offer a more localised understanding of the scientific realism debate—due to Stathis Psillos, Juha Saatsi, and Kyle Stanford—and argue that none of these alternatives offer a satisfactory response to the problem. 相似文献
13.
14.
Since the beginning of quantum mechanics, attempts were made to derive it from simple natural axioms or assumptions. These reconstructions suffered from various defects, including the questionable naturalness or the overabundance of the axioms, the mathematical difficulty of the derivation, and the inclusion of a wider range of theories than just quantum mechanics. Recently, in 2001, Lucien Hardy propounded “five reasonable axioms” that seem to elude such criticism. The present paper purports to give a simplified version of this new foundation, to discuss Hardy׳s original version and subsequent variants by others authors, and to investigate the nature of the relevant axioms in light of their possible connection with correspondence arguments. 相似文献
15.
作为量子信息技术的重要发展方向之一,量子传感与测量可实现跨越式的超高精度测量,并在特定环境抵御噪声干扰,在地质勘测、空间探测、惯性制导和材料分析等重要领域具有广阔的发展和应用前景。本文梳理了近年来欧美等主要科技强国在该领域的重要战略规划与项目部署;并就量子传感与测量五大子领域的发展现状与趋势进行深入分析;最后,对我国提出了三条建议,包括以国家实验室为依托,明确重点研发方向,加快核心技术协同攻关;建立合作平台与机制,推进产业生态环境建设;重视复合型人才培养和对基础研究的长期支持。 相似文献
16.
I propose a general geometric framework in which to discuss the existence of time observables. This framework allows one to describe a local sense in which time observables always exist, and a global sense in which they can sometimes exist subject to a restriction on the vector fields that they generate. Pauli׳s prohibition on quantum time observables is derived as a corollary to this result. I will then discuss how time observables can be regained in modest extensions of quantum theory beyond its standard formulation. 相似文献
17.
Mathias Frisch 《Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics》2005,36(4):23
I show that Albert Einstein's distinction between principle and constructive theories was predated by Hendrik A. Lorentz's equivalent distinction between mechanism- and principle-theories. I further argue that Lorentz's views toward realism similarly prefigure what Arthur Fine identified as Einstein's “motivational realism.” 相似文献
18.
量子科技是具有极强产业远景和关系国家战略发展的前沿领域,越来越多的国家和地区把量子科技的发展列入国家重点战略。了解量子科技发展强国的相关政策和科学家信息,可以管窥到其在政策制定上的一些特质,也可以为预测下一步的政策制定提供参考。本文梳理了欧盟和美国的量子政策发展轨迹,重点分析了其中最新的重大战略部署以及影响政策制定的相关科学家,通过与我国情况进行对比,为我国未来量子科技政策的制定提出了加快国家战略顶层设计、通过国家项目推动量子产业发展、建设量子科技人才梯队等几点建议。 相似文献
19.
20.
Did Ptolemy make novel predictions? Launching Ptolemaic astronomy into the scientific realism debate
The goal of this paper, both historical and philosophical, is to launch a new case into the scientific realism debate: geocentric astronomy. Scientific realism about unobservables claims that the non-observational content of our successful/justified empirical theories is true, or approximately true. The argument that is currently considered the best in favor of scientific realism is the No Miracles Argument: the predictive success of a theory that makes (novel) observational predictions while making use of non-observational content would be inexplicable unless such non-observational content approximately corresponds to the world “out there”. Laudan's pessimistic meta-induction challenged this argument, and realists reacted by moving to a “selective” version of realism: the approximately true part of the theory is not its full non-observational content but only the part of it that is responsible for the novel, successful observational predictions. Selective scientific realism has been tested against some of the theories in Laudan's list, but the first member of this list, geocentric astronomy, has been traditionally ignored. Our goal here is to defend that Ptolemy's Geocentrism deserves attention and poses a prima facie strong case against selective realism, since it made several successful, novel predictions based on theoretical hypotheses that do not seem to be retained, not even approximately, by posterior theories. Here, though, we confine our work just to the detailed reconstruction of what we take to be the main novel, successful Ptolemaic predictions, leaving the full analysis and assessment of their significance for the realist thesis to future works. 相似文献