首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文讨论了Banach空间中非空闭凸子集上的广义渐近拟非扩张型映象的迭代逼近问题,给出了具误差的修改的Ishikawa迭代序列{xn}强收敛到广义渐近拟非扩张型映象T不动点的充要条件:设E是Banach空间,C是E中的非空闭凸子集,T∶C→C是广义渐近拟非扩张型映象,其渐近系数kn满足∑∞n=1(kn-1)〈∞,又设F(T)有界,且T在F(T)中的点处一致连续。任取一点x0∈C,{xn}是根据xn+1=αnxn+βnTnyn+γnunyn=ξnxn+ηnTnxn+δnvn定义的具误差的修改的Ishikawa迭代得到的,其中{un},{vn}是C中的两个有界点列,{αn},{βn},{γn},{ξn},{ηn},{δn}是[0,1]中的6个数列且满足αn+βn+γn=1,ξn+ηn+δn=1,∑∞n=1βn〈+∞,∑∞n=1γn〈+∞。则{xn}强收敛于T的不动点的充要条件是limn→∞infd(xn,F(T))=0,其中d(x,A)为x到集合A的距离。本文的结果推广改进了文献[1-7]中的结论。  相似文献   

2.
将压缩映象推广到Meir-Keeler压缩映象,定义了一个逼近渐近严格伪压缩映象不动点的粘滞-混合投影方法,该方法简化并推广了W.Takahashi等提出的混合投影方法(CQ算法),并在去掉了集合有界性的条件下证明了粘滞-混合投影序列强收敛到渐近严格伪压缩映象的不动点.  相似文献   

3.
迭代逼近渐近非扩张映象的不动点   总被引:3,自引:0,他引:3  
引入具随机混合型误差的Ishikawa和Mann迭代序列,在实Banach空间中研究了渐近非扩张映象和渐近伪压缩映象不动点的具随机混合型误差的Ishikawa和Mann迭代序列的逼近问题,建立了几个强收敛定理,改进和发展了许多已知的结果.  相似文献   

4.
引入具混合误差的N步迭代序列,并在一般的Banach空间上给出了具混合误差的N步迭代序列强收敛于有限个具有公共不动点的广义渐近拟非扩张型映象的一个公共不动点的充分必要条件。本文的结果推广了大量现有成果。  相似文献   

5.
Banach空间上广义渐近拟非扩张型映象不动点的逼近   总被引:3,自引:4,他引:3  
引入一类比渐近拟非扩张型映象更加广泛的广义渐近拟非扩张型映象,并给出具混合误差的Ishikawa迭代序列强收敛于广义渐近拟非扩张型映象的一个不动点的充要条件:设E是一Banach空间,T:E→E是广义渐近拟非扩张型映象,其渐近系数kn满足∑(kn-1)<∞;若T在F(T)中的点处一致连续,任取一点x0∈E,{xn}是由下式定义的具混合误差的Ishikawa迭代序列{xn 1=(1-αn)xn αnTnyn un, ,yn=(1-βn)xn βnTnxn vn,n≥0其中{αn}、{βn}是[0,1]中的两个数列且∞∑n=0αn收敛,{un}、{vn}是E中两个点列且{vn}有界同时∞En=0‖un‖收敛.则{xn}强收敛于T在E中一个不动点的充要条件是lim inf D(xn,F(T))=0.  相似文献   

6.
研究了一致凸Banach空间中渐近拟非扩张型映象不动点具混合误差的迭代逼近问题,改进和推广了相关文献的结果.  相似文献   

7.
用新方法研究了Banach空间中渐近非扩张映象不动点的迭代逼近问题,所得结果改进和发展了Goebel和Kirk,Z·Y·Huang,Rhoades,J·Schu,H.K.Xu等人的结果.  相似文献   

8.
设E是具一致Gateaux可微范数的实Banach空间,D是E的一个凸子集.对于序列{kn}包含[0,∞)的渐近非扩张映象T,赵良才和张石生在一定条件下给出并证明了关于T的具误差的Ishikawa迭代序列收敛于丁的不动点.证明了这一结论对于一般的渐近非扩张映象也是成立的.  相似文献   

9.
在Banach空间中,得到了一类非连续渐近非扩张映象的耦合不动点迭代列的收敛性定理.  相似文献   

10.
在Banach空间中,得到了一类非连续渐近非扩张映象的耦合不动点迭代列的收敛性定理.  相似文献   

11.
在凸度量空间中,引入一类比渐近拟非扩张映射更加广泛的广义渐近拟非扩张型映射,并在完备凸度量空间给出修改的Ishikawa迭代序列收敛于广义渐近拟非扩张型映射不动点的充要条件。  相似文献   

12.
在实凸度量空间中引入广义渐近拟非扩张映射,研究了在广义渐近拟非扩张映射下的带误差的Ishikawa型迭代序列. 在适当的条件下,利用非负实序列不等式获得此迭代序列强收敛到渐近拟非扩张映射的一个公共不动点.  相似文献   

13.
设E是具有一致正规结构的实Banach空间,其范数是一致Gateaux可微的,设C是E的非空有界闭凸子集.T:C→E是渐近非扩张非自映象.证明了在适当条件下,渐进非扩张非自映象的广义Reich迭代序列的强收敛性,从而改进和推广了Reich、Witemann等人的结果.  相似文献   

14.
Banach空间中渐近非扩张映象不动点的逼近   总被引:2,自引:0,他引:2  
进一步研究了Banach空间中渐近伪压缩映象和渐近非扩张映象不动点的新的迭代逼近问题,所得结果改进和发展了已有的结果。  相似文献   

15.
设E是满足Op ial条件的一致凸Banach空间,C是E的非空闭凸子集,T1,T2…,TN:C→C是N个具有公共不动点的渐近非扩张映象。在不同条件下,该文证明了具误差的广义N步迭代序列分别弱收敛和强收敛于T1,T2,…TN的公共不动点。  相似文献   

16.
 去掉了已有文献中的条件:"对任意子列{xni} {xn},当‖Tnixni-xni0时就有‖Txni-xni0"后,研究了Banach空间中渐近拟非扩展型映象不动点的迭代逼近问题;所得结果推广和发展了已有文献中的成果.  相似文献   

17.
在本文中,我们在很一般的条件下证明了Ishikawa迭代序列弱(强)收敛于渐近拟非扩张映象和渐近半压缩映象的不动点,我们的定理改进和推广了Schu的最近结果.  相似文献   

18.
给出了Banach空间中拟-φ-渐近非扩张映像族公共不动点的一个修正的迭代算法,并利用所给出的算法证明了一个强收敛定理,推广了近期的相关结果.  相似文献   

19.
在自反、严格凸、光滑Banach空间中提出了一种关于中间值意义下的拟φ-渐近非扩张映像族公共不动点的收缩投影算法,并利用新的分析技巧证明了该算法的强收敛性,所得结果改进和推广了近期相关的结果.  相似文献   

20.
本文构造了Banach空间中多值广义非扩张映象对的不动点迭代逼近序列对,并证明此序列的聚点为映象对的公共不动点。它是文[1],[2]的推广和改进。设S,T:K→C(K)为多值映象,且(?)x,y∈K,满足: H(Sx,Ty)≤ad(x,y) b[d(x,Sx) d(y,Ty)] c[d(x,Ty) d(y,Sx)](*)其中a,b,c≥0,a 2b 2c≤1,则称S,T为广义非扩张映象对。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号