首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了使系统保持最大驱动力矩、寻求驱动力矩随永磁体转角变化的规律,通过有限元仿真的方法,确定了电磁体的通电状态切换区间;建立了系统矩角特性计算模型,用MATLAB对其进行求解,分析得出了系统矩角特性曲线变化规律;搭建了相应的实验系统,对各参数条件下的系统平均力矩进行了测量.通过对比研究结果表明,系统矩角特性曲线与有限元仿真所得最大包络线变化一致,并围绕实测的平均力矩波动,所得到的矩角特性计算模型是可信的,得到了主要参数对系统驱动能力及转矩脉动程度的影响规律,为进行提高轴流式血泵稳定性方面的研究提供了理论依据.  相似文献   

2.
大间隙磁力传动系统驱动力矩的计算方法   总被引:2,自引:0,他引:2  
提出了行波磁场驱动的大间隙磁力传动系统,通过磁场分析,以系统电磁体4个磁极状态之一的NS(电磁体左极表示为N,右极为S)为例,对电磁体的空间磁场分布进行研究,建立了系统空间磁场数学模型;通过数值计算和推导,建立了系统驱动力矩计算模型;以Matlab为平台对大间隙磁力传动系统的驱动力矩计算模型进行解析求解,并应用ANSYS软件对系统的驱动力矩进行仿真.研究结果表明:通过增加线圈匝数、线圈通电电流和永磁体磁化强度,减小电磁体和永磁体间耦合距离,将电磁体和永磁体的相对位置沿y方向两侧(左侧或右侧) 置于5~10 mm范围内等方法,可提高系统的驱动力矩.  相似文献   

3.
为提高大间隙、高转速条件下磁力传动系统的可靠性,提出行波磁场驱动的大间隙磁力传动技术,研究磁力传动系统窄间数学模型.首先,分析系统主动磁极(电磁体)磁极状态和从动磁极(永磁体)转动状态之间的关系,确定驱动水磁体转动的电磁体4个磁极状态及切换顺序;其次,基于磁路基本原理,通过磁场分析和建模,以电磁体4个磁极状态之一的NS(N表示其左极、S为右极)为例,对电磁体的空间磁场分布进行研究并建立空间磁场数学模型;最后,以MATLAB为平台对4个磁极状态的空间磁场数学模型进行求解,将求解结果与实验数据进行对比.研究结果表明,电磁体空间磁场数学模型是正确的.  相似文献   

4.
介绍磁力驱动泵滑动轴承的使用条件,概述几种该条件的材料的特性及选用知识,同时设计出几种滑动轴承的结构形式,通过实际运行,取得了成功,从而解决了磁力驱动泵因轴承故障而停泵的问题,并通过对轴承的特殊设计,使其能够在比较复杂的环境下运行,拓宽了磁力驱动泵的使用领域。  相似文献   

5.
为了解大间隙、高转速条件下磁力传动系统的能量传递规律,研究行波磁场驱动的大间隙磁力驱动技术;通过微型轴流式血泵外磁场驱动,对大间隙磁力驱动系统各部分能量耗散进行研究,建立系统能量传递效率的数学模型.通过轴流式血泵泵水实验,得到血泵在耦合距离20 mm和30 mm时的最大能量传递效率,即磁力传动系统的最佳工作点,并通过与理论解析值相比较,得到大间隙磁力驱动系统的能量传递效率的变化趋势,确定磁力驱动系统能量传递效率的主要影响因素,为提高磁力驱动系统的能量传递效率提供了途径和依据.  相似文献   

6.
张银  杨红忠  于东祖 《甘肃科技》2003,19(11):67-68
根据研制情况,重点介绍了BFC磁力传动泵在设计和制造中的关键技术和相关解决措施,通过实际应用证明了该系列泵设计的成功性和先进性。  相似文献   

7.
高速轴向磁力驱动机构是一种用来实现力或转矩(功率)无接触传递的机构。根据轴向平面磁力耦合原理设计了轴向磁力驱动机构的测试平台,能测试其在不同磁场条件下,主、被动转子的转速、扭矩、磁场间隙等动态性能参数。实现了对大气隙轴向磁力传动的主要参数的基础研究。  相似文献   

8.
平面磁力研磨电磁感应器的设计计算   总被引:7,自引:0,他引:7  
本讨论了平面磁力研磨电磁感应器的设计计算问题,用磁场分割法计算电磁线圈的磁动势。  相似文献   

9.
基于外磁场耦合的血泵驱动系统   总被引:5,自引:0,他引:5  
基于横向旋转磁场的耦合原理,提出轴流式血泵外磁场驱动系统方案,设计一种泵机分离的结构。采用等效电流法建立了永磁体等效物理模型,计算血泵驱动系统的主动轮和从动轮之间的距离、相对转角以及磁极对数对血泵传动扭矩的影响。研究结果表明:在生理范围内,即主动轮与从动轮的安装距离小于60mm,设计的永磁体输出的扭矩大于血泵需要的扭矩(6.4N-mm),能够满足血泵的驱动要求。主动轮与从动轮的磁极对数是影响血泵系统性能的关键参数,主动轮与从动轮磁极对数越少,传动扭矩越大,但是扭矩波动也大;主动轮的磁极对数大于从动轮的磁极对数,驱动系统传动平稳,对控制有利。  相似文献   

10.
磁力传动机构是近年来得到广泛应用的新型驱动机构,本文首先分析磁力传动机构设计的主要内容和设计方法方面存在的主要问题,分析讨论几种磁力耦合传动机构传递力矩计算方法的局限,介绍了平面轴向、同轴径向磁力耦合传动机构传递力矩的工程计算方法及其在纺织机械中的应用设计实例.  相似文献   

11.
12.
室温离子液体是新兴的绿色环保材料,具有液态温度范围广、不易挥发、良好的导电性和导光性,是微流控技术和光电子器件中良好的流体介质。离子液体的驱动是其能否在这些领域中应用的关键技术,也是应用中常常碰到的瓶颈。本文提出了一种电磁驱动离子液体的方法,无需机械移动装置,可双向驱动,稳定性好,并从离子液体本身性质出发,进行了微观和宏观两方面的理论分析及仿真计算,结果表明这种方式驱动力大,驱动速度较快,只需几伏的低压,能耗低,同时给出了一个最佳通道高宽比,最后分析了本方法存在的负面影响。  相似文献   

13.
介绍了磁力金属带传动的工作原理,分析和探讨了其有效拉力、线速度及弹性滑动率等传动性能,并通过实验测定了相关性能参数。结果表明,磁力金属带传动主要是利用磁场吸引力与初拉力的耦合作用来增加摩擦力进而传递运动和动力的,其传动效率可达95%~98%,而弹性滑动率一般在0.1%以下。  相似文献   

14.
基于ANSYS软件建立了行波磁场驱动的大间隙磁力传动系统的二维电磁场仿真模型,分析了电磁体四种磁极状态下,永磁体角位移位于0°到360°之间所受的磁力矩情况.为使系统获得最大驱动力矩,提出了电磁体磁极状态切换的最佳切换相位角的概念,并对其进行了求解.通过分析系统中电磁体和永磁体间耦合距离及两电磁体间磁极距离对系统最佳切换相位角的影响,得到了最佳切换相位角的近似计算公式.通过轴流式血泵负载实验,结合血泵负载力矩模型,计算并比较了各种切换相位角下血泵的最大负载力矩.结果表明:按仿真所得的最佳切换相位角进行相位切换可使系统具有最大驱动能力.  相似文献   

15.
 基于ANSYS有限元仿真平台的动网格技术,建立了三维增强型电磁驱动装置有限元模型。结合440 kA发射条件下增强型电磁驱动装置附近的空间磁场分布,验证了模型的可靠性。结合模型开展仿真,获得了增强型电磁驱动装置内膛中轴线上磁场的分布规律,以及电磁驱动装置径向磁场在空间的衰减规律。指出电流峰值时刻,电枢前端的磁感应强度随着距离增大先增大,而后趋于不变。在模型中,可认为电枢前端磁场最大为2.3~3.3 T。  相似文献   

16.
对新型磁力金属带传动中传动比的影响因素,如有效牵引力、初张力、磁感应强度、中心距、小带轮直径及围包角等进行了分析和数值模拟,揭示了传动比随这些影响因素而变化的规律。结果表明,磁力金属带传动的传动比随磁感应强度、初张力及中心距的增大而增大,随围包角及小带轮直径的增大而减小。文中指出,由于磁力的作用,小带轮直径及其围包角均可相应减小,因此,其传动比较普通带传动可增加3~4倍。  相似文献   

17.
磁力抛光多数以单面抛光为主,较少有双面同时有效抛光方式.本文提出了基于环形磁场励磁的磁力抛光新工艺,该方法可以同时有效抛光两个表面.通过设计能励磁环形磁场的电磁铁,并进行三维有限元仿真分析,搭建了环形磁场双面抛光装置.利用该平台进行不锈钢两面抛光工艺试验研究,探讨了电流强度、磁极与工件间间隙、主轴转速和抛光时间工艺等参数对表面粗糙度R_a的影响.得出表面粗糙度R_a随着抛光时间、工作间隙、工件转速的增大而减小.设计正交实验方案得出合理的两面磁力抛光工艺参数,并最终取得了具有良好表面粗糙度R_a的两面工件样品.试验证明,该方法可以同时对工件的两个表面进行抛光,两个表面的表面粗糙度R_a由最初0.2μm下降到R_a(S)=0.094μm和R_a(N)=0.068μm.  相似文献   

18.
本文利用等效磁荷理论建立了磁感应强度与隔离盘半径及角度等参数之间的三维解析模型,分析了盘式磁力驱动器磁场分布。针对12极的盘式磁力驱器,利用Matlab编程模拟出磁场的三维空间分布,并探索了磁力驱动器的不同参数对输出转矩的影响规律。本文所做工作为平面式磁力驱动器的优化设计及研究涡流发热问题提供了依据。  相似文献   

19.
本文利用等效磁荷理论建立了磁感应强度与隔离盘半径及角度等参数之间的三维解析模型,分析了盘式磁力驱动器磁场分布。针对12极的盘式磁力驱器,利用Matlab编程模拟出磁场的三维空间分布,并探索了磁力驱动器的不同参数对输出转矩的影响规律。本文所做工作为平面式磁力驱动器的优化设计及研究涡流发热问题提供了依据。  相似文献   

20.
磁力金属带传动主要是靠电磁力的作用来增加摩擦力而传递运动和动力的 ,是一种新型的摩擦传动 ,具有承载能力大、弹性滑动小、传动准确、效率高等特点 .对磁力金属带传动设计过程中几个常用的设计参数 ,如包角系数、传动比系数及弯曲系数等进行了分析 ,推导出了这些参数的计算公式 ,并确定了其取值范围 ,为磁力金属带传动的设计计算提供了理论依据 .图 4,参 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号