首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 687 毫秒
1.
针对山西长平煤业有限责任公司综采工作面大采高、瓦斯涌出量大的现实条件,研究并实施了综合瓦斯治理技术,杜绝了大采高、高瓦斯综采工作面瓦斯超限现象,提高了工作面的单产,取得了显著的经济效益和社会效益。  相似文献   

2.
针对高瓦斯综采工作面瓦斯含量高、瓦斯涌出量大、开采强度大等特点,提出在回采巷道掘进和工作面回采过程中进行瓦斯立体抽采的治理方法,巷道掘进期间通过底抽巷穿层钻孔与掘进工作面顺层钻孔形成立体抽采系统;工作面回采期间利用底抽巷穿层抽采、工作面顺层抽采和高抽巷组成立体抽采系统,确定了瓦斯立体抽采的主要技术参数;结合赵庄煤矿1307工作面实际的地质条件和开采条件,进行了瓦斯立体抽采试验.研究结果表明:瓦斯立体抽采大幅度降低了工作面的瓦斯含量,瓦斯抽排率达到69.28%,瓦斯抽采效果显著,是一种良好的瓦斯治理方法,实现了工作面掘进和回采期间的安全生产.  相似文献   

3.
针对上良煤矿32203工作面瓦斯涌出量大的情况,通过分析32203工作面瓦斯涌出的来源,确定邻近层瓦斯抽采是治理工作面瓦斯的最有效的方法,提出在32203工作面上邻近层实施高位钻孔、下邻近层实施底抽巷瓦斯抽采的瓦斯治理方案,对于工作面瓦斯治理来说有一定的指导价值。  相似文献   

4.
为了充分研究大采高工作面瓦斯涌出随开采过程的变化规律,文中结合晋煤集团寺河矿W1301工作面实际条件,通过现场实测工作面支架工作面阻力、工作面超前支承压力及瓦斯涌出浓度,掌握了大采高工作面来压显现特征,进一步分析了瓦斯涌出与矿压显现的规律.实践证明:大采高工作面来压显现并不强烈,动载系数平均为1.34;当工作面来压显现时,瓦斯涌出量急剧增大,支架工作阻力降低时,工作面瓦斯浓度也随之降低,大采高条件下钻孔瓦斯涌出量与其所在位置支承压力大小成反比关系;支承压力增高区的钻屑量大,支承压力降低区的钻屑量较小.  相似文献   

5.
为得到回采工作面瓦斯治理的规范性、标准性方案,以西山煤电集团回采工作面的瓦斯抽采方案为例,根据瓦斯来源将回采工作面瓦斯抽采方法归纳为本煤层、裂隙带、下邻近层及采空区4类,将这4类抽采方法和工作面瓦斯绝对涌出量组成复合指标体系,采用系统聚类分析法,并借助SPSS数据处理软件对这些指标进行分析,根据聚类分析结果把回采工作面瓦斯治理划分为4个等级,并提出了不同等级工作面瓦斯治理的基本方法。该划分方法能提高制定瓦斯抽采方案的效率,对相似地质条件矿井的瓦斯治理工作具有指导意义。  相似文献   

6.
秦磊 《安徽科技》2009,(12):42-44
任楼煤矿Ⅱ7211大采高综采工作面生产初期瓦斯涌出大工作面,瓦斯传感。器经常越警,制约着工作面产量的提高,严重威胁着矿井的安全生产。为了实现矿井的高产高效,Ⅱ7211大采高综采工作面通过采取一系列的瓦斯综合治理措施.消除了瓦斯涌出的制约.取得了显著的效果。  相似文献   

7.
为了有效解决大采高综放工作面部分区域瓦斯超限问题,本研究采用数值模拟方法对不同层位高抽巷进行对比分析,研究沿采场垂直高度、采场走向深度及倾向长度的瓦斯流动规律及瓦斯浓度分布规律。以上隅角瓦斯浓度和抽采浓度作为判断依据,模拟分析无高抽巷、高位高抽巷、低位高抽巷三种情形下的不同区域瓦斯浓度和抽采量。结果显示,随着瓦斯扩散距离增加,瓦斯浓度逐渐升高,瓦斯的升浮-扩散效应就越明显。应用高位高抽巷和低位高抽巷后,瓦斯体积分数在回风巷侧下降率分别为22.9%~37.7%和31.8%~46.2%;其中,上隅角处瓦斯体积分数分别降低了33.4%和38.3%.此外,低位高抽巷和高位高抽巷瓦斯抽采体积分数分别为0.95%和0.41%;其中,低位高抽巷瓦斯有70.5%来源于工作面,抽采量是高位高抽巷的2.32倍。研究结果表明,低位高抽巷在大采高综放工作面上隅角及回风巷瓦斯治理中有很好的发展前景,可以有效降低上隅角瓦斯超限的风险。  相似文献   

8.
李杰 《科学技术与工程》2024,24(15):6225-6233
为了解决刘家梁矿2号煤层低含量赋存高强度开采引发工作上隅角瓦斯问题,缓解矿井因岩巷掘进造成采掘接替紧张的局面,提出了采用大直径高位走向长钻孔代替工作面低位岩石抽采巷的瓦斯治理技术,结合矿井2号煤层顶板煤岩物理力学参数,通过理论分析、UDEC、FLUENT数值模拟的方法,分别从工作面裂隙带发育、工作面采空区流场分布等不同的专业角度,分析、研究了瓦斯流通通道及赋存规律,为定向高位钻孔合理布孔层位选择提供理论支撑;结合1号钻场瓦斯抽采效果,修正工作面煤岩赋存资料,优化2号钻场抽采设计,调整钻孔布置参数,以工作面瓦斯抽采纯量、上隅角瓦斯浓度为指标,对不同条件下瓦斯治理效果进行对比,实践证明:走向高位长钻孔能够取代低位岩石抽采巷,用于低含量赋存、高强度开采的放顶煤工作上隅角瓦斯治理,治理效果显著,上隅角瓦斯浓度维持在0.6%以下。  相似文献   

9.
针对高抽巷不同抽采能力抽采瓦斯时的瓦斯治理效果和可能诱发的采空区自燃问题,以某矿主采煤层工作面构建采空区气体渗流模型,利用FLUENT数值模拟软件分析了不同抽采能力下的瓦斯治理效果和采空区自燃危险性.结果表明:当高抽巷抽采能力越大时,采空区内瓦斯浓度越低,氧化升温带的宽度越大,自燃危险性越高.依据研究结论,分析得出当高抽巷的抽采能力系数(η)为0.25 ~0.3时,可防止上隅角瓦斯超限、提高瓦斯抽采率和预防采空区自燃,对高瓦斯易自燃煤层高抽巷抽采能力的选择具有一定的指导意义.  相似文献   

10.
为研究高抽巷在采空区瓦斯抽采和上隅角瓦斯治理方面的应用,以及探究高抽巷抽采层位对采空区瓦斯分布规律的影响,以李阳煤矿15302综放工作面为研究对象,运用Fluent数值模拟软件对采空区未抽采和不同层位高抽巷抽采时的瓦斯分布进行模拟,通过对比瓦斯抽采浓度和上隅角瓦斯浓度的数据,分析高抽巷在不同层位的瓦斯抽采效果,将模拟结果与现场实际相结合,设计适合的高抽巷抽采层位方案,并用现场实测数据进行验证。结果表明:高抽巷瓦斯抽采浓度随抽采位置距顶板垂直高度的增加而升高,随着距回风巷水平距离的增加先升高后降低,上隅角瓦斯浓度随垂距和平距的增加均先降低后升高;理论最佳抽采层位为垂距30 m,平距32 m,工作面上隅角瓦斯浓度在0.19%以内,设计抽采层位为垂距40 m,平距35 m,工作面上隅角瓦斯浓度维持在0.63%~0.65%.选取合理的高抽巷抽采层位不仅有利于提高瓦斯抽采效果,而且能有效解决上隅角瓦斯超限的问题。  相似文献   

11.
回采工作面瓦斯超限现象经常发生,给煤矿安全生产带来重大隐患.为了掌握回采工作面瓦斯涌出的状况及随时空的变化规律,寻找瓦斯富集地点,确保工作面安全生产.采用单元法原理对平煤新峰四矿12160工作面的瓦斯来源及构成进行了研究分析,得出了回采工作面瓦斯涌出的分布规律,为工作面防止瓦斯积聚及改变瓦斯运移通道等瓦斯治理提供必要的技术指导.  相似文献   

12.
利用大型有限元分析软件ANSYS对工作面进行应力模拟,得出沿工作面法线方向应力分布规律,并进一步分析应力变化对煤层透气性系数的影响,为瓦斯治理及煤和瓦斯突出预测提供技术支持。  相似文献   

13.
在全面分析了采掘工作面煤与瓦斯突出影响因素的基础上 ,构建了突出预测推理知识模型 ,借助XF6 .1开发工具 ,结合焦作东部矿区实际地质构造 ,设计实现了基于Windows平台的工作面煤与瓦斯突出预测专家系统 ,结果表明 ,此专家系统能以专家级水平对王作面煤与瓦斯突出灾害做出比较准确的预测 ,从而保障煤矿的安全生产。  相似文献   

14.
概述了瓦斯抽放的目的和意义,阐述了抽放上覆邻近层采空区瓦斯系统的工作原理、方法及工艺,指出通过对上覆邻近层采空区进行瓦斯抽放,可防止和减少瓦斯下泄,从根本上解决综采工作面生产期间的瓦斯特殊涌出。  相似文献   

15.
浅析城市燃气安全管理工作   总被引:1,自引:0,他引:1  
安全管理是燃气事业发展举足轻重的一件大事。从燃气安全管理的重要作用、燃气安全存在的问题、燃气安全隐患形成的原因等方面出发,结合工作实际提出了燃气安全隐患风险防范的举措。  相似文献   

16.
综采工作面的瓦斯涌出规律及涌出量的预测   总被引:10,自引:0,他引:10  
根据综合机械采煤的特点和瓦斯流动理论,将瓦斯涌出源划分为煤壁(围岩)瓦斯涌出、落煤瓦斯涌出、采空区(残煤)瓦斯涌出及上下邻近层(未采分层)瓦斯涌出4个部分。针对现有回采工作面瓦斯涌出量预测计算方法存在的问题,以煤层瓦斯流动理论和实测数据分析为基础,系统的研究了综采工作面涌出源瓦斯的涌出规律,结合综合机械化采煤具有采、装、运连续作业的特点,分别对各瓦斯涌出源的瓦斯涌出量进行预测,进而建立了一种适应性范围广且准确率高的综采工作面瓦斯涌出量预测模型,对制定瓦斯防治方案,进而根治矿井瓦斯具有重要的实际意义。并且运用该模型对潞安集团新建的屯留矿进行了瓦斯涌出量的预测。  相似文献   

17.
采用走向高抽巷抽放综放面上邻近层瓦斯研究   总被引:3,自引:0,他引:3  
根据综放工作面瓦斯的来源及涌出特点,探讨了采用走向高抽巷抽放综放面上邻近层瓦斯,实现大通道,大抽出率的连续抽放,保证综放工作面瓦斯不超限的技术。  相似文献   

18.
瓦斯继电器作为变压器非电量保护中的重要角色一直备受关注。从瓦斯继电器的工作原理、内部结构、一般性的试验项目及主要实验项目、重瓦斯和轻瓦斯的整定值、瓦斯继电器定值整定方法等方面,阐述了瓦斯继电器的调试,并结合实际工作经验提出了进口瓦斯继电器的定值整定方法,以期有效地保护变压器的运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号