首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinylidene fluoride) (PVDF) composite membranes blended with nano-crystalline cellulose (NCC) for ultrafiltration were prepared by a Loeb-Sourirajan (L-S) phase inversion process.The effects of NC...  相似文献   

2.
Poly(3,4-propylenedioxythiophene)/nano-Zinic Oxide(PProDOT/ZnO) composites with the content of 3-7 wt%nano-ZnO were synthesized by the solid-state method with FeCl3 as oxidant.The structure and morphology of the composites were characterized by Fourier transform infrared(FTIR)spectroscopy,ultraviolet-visible(UV-vis) absorption spectroscopy,X-ray diffraction(XRD) and transmission electron microscopy(TEM).The electrochemical performances of the composites were investigated by galvanostatic charge-discharge,cyclic voltammetry and electrochemical impedance spectroscopy(EIS).The photocatalytic activities of the composites were investigated by the degradation of methylene blue(MB) dyes in aqueous medium under UV light irradiation.The results from FTIR and UV-vis spectra showed that the PProDOT/ZnO composites were successfully synthesized by solid-state method,and nano-ZnO had great influences on the conjugation length and oxidation degree of the polymers.Furthermore,the PProDOT/5 wt%ZnO had the highest conjugation and oxidation degree among the composites.The results of XRD analysis indicated that there were some FeCl4- ions as doping agent in the PProDOT matrix,and the content of ZnO had no effect on diffraction pattern of PProDOT.Morphological studies revealed that the pure PProDOT and composites had similar morphological structure,and all the composites displayed an irregular sponge like morphology.The results of electrochemical tests showed that the PProDOT/5 wt%ZnO had a higher electrochemical activity with a specific capacitance value of 220 F g-1 than others.The results from photocatalytic activities of the composites indicated that the PProDOT/5 wt%ZnO had better photocatalytic activity than other composites.  相似文献   

3.
The well-dispersive yttrium-stabilized cubic zirconia nanoparticles were fabricated via vapor phase hydrolysis process,and the as-synthesized cubic zirconia nanoparticles were characterized by X-ray di...  相似文献   

4.
The surface characteristics of an implant that influence the speed and strength of osseointegration include crystal structure and bioactivity. The aim of this study was to evaluate the bioactivity of a novel natural hydroxyapatite/zircon(NHA/zircon) nanobiocomposite coating on 316L stainless steel(SS) dental implants soaking in simulated body fluid. A novel NHA/zircon nanobiocomposite was fabricated with 0(control),5, 10, and 15 wt% of zircon in NHA using ball mill for 1 h. The composite mixture was coated on SS implants using a plasma spray method.Scanning electron microscopy(SEM) was used to evaluate surface morphology, and X-ray diffraction(XRD) was used to analyze phase composition and crystallinity(Xc). Further, calcium ion release was measured to evaluate the coated nanobiocomposite samples. The prepared NHA/zircon coating had a nanoscale morphological structure with a mean crystallite size of 30–40 nm in diameter and a bone-like composition,which is similar to that of the biological apatite of a bone. For the prepared NHA powder, high bioactivity was observed owing to the formation of apatite crystals on its surface. Both minimum crystallinity(Xc=41.1%) and maximum bioactivity occurred in the sample containing 10 wt% of zircon because of minimum Xcand maximum biodegradation of the coating sample.  相似文献   

5.
Bimetallic CuPt nanocrystals with size ranging from 3 to 30 nm were synthesized in the presence of either hexadecylamine or poly(vinylpyrrolidone) as a capping agent.Different growth stages of CuPt nanoparticles prepared with hexadecylamine have been investigated and a non-classic mechanism governing the formation of the metal alloy was revealed.It was found that the precursor molecules aggregate into amorphous spheres at a very early stage,followed by surface multiple nucleation,formation and combination of crystalline islands to produce a core-shell structure with surface-to-core extension of the crystallization to achieve single crystals.CuPt nanocrystals synthesized with poly(vinylpyrrolidone) grew via the classic route.Dealloying treatment was applied on these CuPt nanoalloys to selectively remove Cu.Large particles(30 nm) with Cu-rich cores exhibited hollow structures after dealloying while 3 nm particles remained solid,demonstrating that particle size and composition have a great influence on the final morphology of dealloyed particles.  相似文献   

6.
LiNi0.5Mn1.5O4-δ which possesses a high voltage of 4.7 V vs.Li+/Li and stable structure has been considered as a promising cathode material for high energy Li-ion batteries.In this study,well-crystalli...  相似文献   

7.
Bionic titania coating carbon multi-layer material was fabricated by employing canna leaves as substrate and carbon precursor. Titania nanocrystals were assembled and coated on the natural films. The carbonation treatment under pure N_2 atmosphere yielded the ultrathin multi-film hybrid material. The carbon layer was coated with small anatase titania crystallite(8–10 nm) and possessed a highly specific surface area of 248.3 m~2 g~(-1). Examination using UV–visible spectrophotometer(UV–vis) showed that the band gap of the multi-layer material was reduced to 2.75 eV, and the hydrogen production by photocatalytic splitting of water under visible light irradiation was about 302 μmol g~(-1) after six hour.  相似文献   

8.
The electroless plating Ni–P is prepared on the surface of Mg–7.5Li–2Zn–1Y alloys with different pickling processes.The microstructure and properties of Ni–P coating are investigated.The results show that the Ni–P coatings deposited using the different pickling processes have a different high phosphorus content amorphous Ni–P solid solution structure,and the Ni–P coatings exhibit higher hardness.There is higher phosphorus content of Ni–P amorphous coating using 125 g/L Cr O3and 110 ml/L HNO3(w68%)than using 180 g/L Cr O3and 1 g/L KF during pre-treatment,and the coating structure is more compact,and the Ni–P coatings exhibit more excellent adhesion with substrate(Fcup to22 N).The corrosion potential of Ni–P coating is improved and exhibits good corrosion resistance.As a result,Mg-7.5Li-2Zn-1Y alloy is remarkably protected by the Ni–P coating.  相似文献   

9.
Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd_2O_3-4.5 mol% Y_2 O_3-ZrO_2(2 GdYSZ) topcoat using air plasma spraying(APS). Hot corrosion behavior of the as-sprayed thermal barrier coatings(TBCs) were investigated in the presence of 50 wt%Na_2SO_4 + 50 wt% V_2O_5 as the corrosive molten salt at 900 ℃ for 100 h. The analysis results indicate that Gd doped YVO_4 and m-ZrO_2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers(Y_2O_3, Gd_2O_3) of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO_2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.  相似文献   

10.
In order to protect Nb-Ti-Si based ultrahigh temperature alloy from oxidation, pack cementation processes were utilized to prepare Ce and Y jointly modified silicide coatings. The Ce and Y jointly modified silicide coating has a double-layer structure: a relatively thick (Nb, X)Si2 (X represents Ti, Cr and Hf elements) outer layer and a thin (Ti, Nb)5Si4 transitional layer. The pack cementation experiments at 1150 ℃ for 8 h proved that the addition of certain amounts of CeO2 and Y2O3 powders in the packs distinctly influenced the coating thickness, the contents of Si, Ce and Y in the (Nb, X)Si2 outer layers, and the density of cavities in the coatings. In order to study the effects of Ce and Y joint modification in the silicide coatings, both only Ce and only Y modified silicide coatings were also prepared for comparison. The mechanisms of the beneficial effects of Ce and Y are discussed. A pack mixture containing 1.5CeO2-0.75Y2O3 (wt%) powders was employed to investigate the growth kinetics of the Ce and Y jointly modified silicide coating at 1050, 1150 and 1250 ℃. It has been found that the growth kinetics obeyed parabolic laws and the parabolic rate constants were 109.20 mm2/h at 1050 ℃, 366.75 mm2/h at 1150 ℃ and 569.78 mm2/h at 1250 ℃, and the activation energy for the growth of the Ce and Y jointly modified silicide coating was 197.53 kJ/mol.  相似文献   

11.
Fe-25 wt% Y2O3composite powders have been fabricated by mechanical milling(MM) Fe powders of 100 μm in diameter and Y2O3nanoparticles in an argon atmosphere for the milling periods of4,8,12,24,36,and 48 h,respectively.The features of these powders were characterized by using X-ray diffraction(XRD),scanning electron microscopy(SEM),electron probe micro analyzer(EPMA) and transmission electron microscopy(TEM).The experimental results showed that the mean particle size and crystalline size of MM powders decreased with the milling time increasing.All the elements distributed homogenously inside the powders after 48 h of MM.The lattice constant of the matrix α-Fe kept constant with the milling time,and no solid solution took place during MM process.After 8 h of MM,the α-Fe in each powder became nanocrystalline.After 48 h of MM,Y2O3changes from nanostructure into amorphous structure,and the crystalline size of α-Fe further decreased to 10 nm.The Y2O3in the powders mechanically milled for 48 h kept the amorphous structure after being annealed at 400 1C,and starts to crystallize when the powders are annealed at 600 1C.The amorphous Y2O3contains a small amount of Fe,and crystalline FeYO3appears at 800 1C.  相似文献   

12.
The ternary magnesium hydride NaMgH 3 has been synthesised via reactive milling techniques.The method employed neither a reactive H2 atmosphere nor high pressure sintering or other post-treatment processes.The formation of the ternary hydride was studied as a function of milling time and ball:powder ratio.High purity NaMgH 3 powder(orthorhombic space group Pnma,a 5.437(2),b 7.705(5),c 5.477(2) ;Z 4) was prepared in 5 h at high ball:powder ratios and characterised by powder X-ray diffraction(PXD),Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDX).The products formed sub-micron scale(typically 200-400 nm in size) crystallites that were approximately isotropic in shape.The dehydrogenation behaviour of the ternary hydride was investigated by temperature programmed desorption(TPD).The nanostructured hydride releases hydrogen in two steps with an onset temperature for the first step of 513 K.  相似文献   

13.
Ni–P electroless coating was applied on low carbon steel with the incorporation of different amounts of nano Al2O3 powder (ranging from 3 g/l to 30 g/l) in electroless bath. Corrosion properties and microstructures of the coating were studied. The dispersion stability of alumina colloidal particles stabilized by polymeric (non-ionic) surfactants in an electroless bath was also investigated. The surface morphology and the relevant structure were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Corrosion behavior of the coated steel was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results showed that increasing alumina concentration not only changed the surface morphology, but also promoted the corrosion resistance. Addition of surfactants has an indirect effect on the amount of the incorporated particles. Meanwhile, in the presence of surfactant, corrosion resistance of Ni–P coating containing even a small quantity of alumina was improved since a stabilized bath was obtained.  相似文献   

14.
Silica nanoparticles have been prepared from tetraethylorthosilicate dissolved in ethanol followed by base-catalyzed condensation.Earlier works reported that at least four parameters,namely concentrati...  相似文献   

15.
Hybridization of Mg-doped ZnO and reduced graphene oxide(MZO–RGO) were synthesized through one pot reaction process. Crystallization of MZO–RGO upon thermal decomposition of the stearate precursors was investigated by X-ray diffraction technique. XRD studies point toward the particles size with 10–15 nm,which was confirmed by transmittance electronic microscopy,and also indicates that graphene oxide has been directly reduced into its reduced state graphene during the synthesis. Graphene hybridized MZO photocatalyst showed enhanced catalytic activity for the degradation of methylene blue(MB). The degree of photocatalytic activity enhancement strongly depended both on the coverage of graphene on the surface of MZO nanoparticles and the Mg doping concentration. The sample of 2 wt% graphene hybridized 5 at% Mg-doped ZnO showed the highest photocatalytic activity,which remained good photocatalytic activity after nine cycling runs.  相似文献   

16.
Graphite nanosheets (GNS) were prepared by surfactant assisted ultrasonication from expanded graphite (EG) and followed by coating onto vinylon fabrics with water-borne polyurethane (WPU). The morphology of GNS and GNS/polyurethane (PU) coatings was characterized by field emission scanning electron microscope (FESEM), and the structure of GNS was studied by fourier transform infrared (FTIR) spectroscopy. Electromagnetic (EM) parameters indicated that GNS is a kind of dielectric loss material, in which little magnetic loss is found. Reflection loss (RL) results showed that both GNS content and coated thickness had great influences on the microwave absorption. For the fabric coated with GNS/PU nanocomposites (30/100 by weight, wet thickness of 0.39 mm for dry areal density in 130 g/m2), RL values exceeding 5 dB could be obtained in the frequency range of 10.7–18 GHz, while 10 dB in 12.7–18 GHz, and a minimum value of 28 dB at 15.2 GHz. These GNS/PU coated fabrics are light and flexible with much thin and low-cost coated layer, and showed great potential in radar camouflaging and electromagnetic interference application.  相似文献   

17.
In order to improve the anti-oxidation of C/C composites, a SiC–MoSi2multi-phase coating for SiC coated carbon/carbon composites(C/C)was prepared by low pressure chemical vapor deposition(LPCVD) using methyltrichlorosilane(MTS) as precursor, combined with slurry painting from MoSi2 powder. The phase composition and morphology were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) methods, and the deposition mechanism was discussed. The isothermal oxidation and thermal shock resistance were investigated in a furnace containing air environment at 1500 1C. The results show that the as-prepared SiC–MoSi2coating consists of MoSi2 particles as a dispersing phase and CVD–SiC as a continuous phase. The weight loss of the coated samples is 1.51% after oxidation at 1500 1C for 90 h, and 4.79% after 30 thermal cycles between 1500 1C and room temperature. The penetrable cracks and cavities in the coating served as the diffusion channel of oxygen, resulted in the oxidation of C/C composites, and led to the weight loss in oxidation.  相似文献   

18.
Synthesis and consolidation behavior of Cu–8 at%Cr alloy powders made by mechanical alloying with elemental Cu and Cr powders,and subsequently,compressive and electrical properties of the consolidated alloys were studied.Solid solubility of Cr in Cu during milling,and subsequent phase transformations during sintering and heat treatment of sintered components were analyzed using X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The milled powders were compacted applying three different pressures(200 MPa,400 MPa and 600 MPa)and sintered in H2atmosphere at 900 1C for 30 min and at 1000 1C for 1 h and 2 h.The maximum densification(92.8%)was achieved for the sample compacted at 600 MPa and sintered for 1000 1C for 2 h.Hardness and densification behavior further increased for the compacts sintered at 900 1C for 30 min after rolling and annealing process.TEM investigation of the sintered compacts revealed the bimodal distribution of Cu grains with nano-sized Cr and Cr2O3precipitation along the grain boundary as well as in grain interior.Pinning of grain boundaries by the precipitates stabilized the fine grain structure in bimodal distribution.  相似文献   

19.
Four activated carbon(AC) samples prepared from rice husk under different activation temperatures have been characterized by N2adsorption–desorption isotherms, thermogravimetric analysis(TGA–DTA), Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). The specific surface area of AC sample reached 2681 m2 g 1under activation temperature of 800 1C. The AC samples were then tested as electrode material; the specific capacitance of the as-prepared activated carbon electrode was found to be 172.3 F g 1using cyclic voltammetry at a scan rate of 5 mV s 1and 198.4 F g 1at current density 1000 mA g 1in the charge/discharge mode.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

20.
The rectangular microtubes array of perchlorinated copper phthalocyanines(G16CuPc),were synthesized by physical vapor deposition technique without using any template or catalyst.The synthesis process of the tubular structure is very simple,easy to control,and a little raw material is used.The morphology and crystal structure of the obtained samples were analyzed by means of scanning and transmission electron microscopy(SEM and TEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The microtubes have an entire hollow interior,open ends with rectangular cross-section,a large interior of 1.4-1.8 urn width,and the thin walls of 80-100 nm.The obtained products exhibit excellent crystalline nature,high chemical and thermodynamic stability,excellent biocompatibility,as well as innocuity.It is believed that these well-defined microtubular structures of an organic material will be used as active materials for solar cells,nanodevices for field emission apparatus,microchannels for biochip and microvessel for drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号