首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环状碳酸乙烯酯(EC)分别与乙二胺、己二胺开环反应合成1,2-乙二氨基甲酸羟乙酯(EDHU)与1,6-己二氨基甲酸羟乙酯(HDHU),用FT-IR、1 H-NMR、13C-NMR等手段对其结构进行表征并作为扩链剂与二异氰酸酯(MDI)、聚酯多元醇反应制备聚氨酯热熔胶,对热熔胶的黏结性能、结晶性能、微相分离程度、表面张力及流变性能进行研究,结果表明:EDHU与HDHU作为扩链剂合成的聚氨酯热熔胶的微相分离程度分别为91.2%和83.9%,与传统的1,4-丁二醇(BDO)扩链剂合成的热熔胶相比,EDHU合成的热熔胶黏结强度提高了20%。  相似文献   

2.
聚六亚甲基碳酸酯聚氨酯脲的合成研究   总被引:9,自引:0,他引:9  
由己二醇和碳酸二苯酯通过酯交换反应合成聚碳酸酯二醇,再使用两步法先后与MDI和乙二胺反应,制备聚六亚甲基碳酸酯聚氨酯脲(PCUU),并对聚合物进行了拉伸试验、IR、DSC、DMA等分析。研究结果表明,PCUU存在硬段/软段微相分离以及聚碳酸酯聚氨酯脲的化学结构,微相分离程度受硬段含量、软段相对分子质量等因素所影响;PCUU的玻璃化转变温度在-14℃以下,在室温表现出橡胶特性;PCUU的软硬段具有合适的硬段含量和软段分子量的PCUU能达到最佳的抗张强度。  相似文献   

3.
制备了不同硬段含量(18%~34%)的快速固化聚氨酯修补胶(PRA),考察了硬段含量对PRA的固化时间、力学性能、耐热性能、耐水性能和耐磨性能的影响。结果表明:当硬段含量由18%增加到34%时,PRA的氢键化程度增大,固化速度加快,拉伸强度、撕裂强度和剪切强度增大,断裂伸长率减小;随着硬段含量的增加,总体上PRA的起始分解温度提高,硬段热失重率增大,软段热失重率减小;硬段含量对PRA吸水率的影响很小,浸水7 d后PRA的力学性能与浸水前相比有所下降;随着硬段含量的增加,PRA的磨耗体积先减小后增大,在硬段含量为26%和30%时磨耗体积较小;硬段含量为30%的PRA的综合性能较好,其固化时间为50 s,拉伸强度为19.94 MPa,断裂伸长率为460%,撕裂强度为70.72 kN/m,剪切强度为1.87 MPa,阿克隆磨耗体积为47 mm3。  相似文献   

4.
针对纯3,3′-二氯-4,4′-二氨基二苯甲烷(MOCA)扩链制备的2,4-甲苯二异氰酸酯(TDI)型聚氨酯(PU)弹性体阻尼性能欠佳的问题,采用MOCA/聚四氢呋喃醚二醇(PTMG)混合扩链剂,通过预聚体法制备不同扩链剂比例的PTMG-TDI型PU弹性体. 分别采用FTIR、DSC、DMA测试发现:随着混合扩链剂中PTMG1000(Mn为1 000)比例增加,PU的氢键化指数降低,软硬段的微观相分离程度下降,硬段微晶的熔融温度和熔融焓随之减小,损耗因子增大. 当MOCA与PTMG1000的摩尔比为85 15时,PU硬度为85 A,拉伸强度、撕裂强度分别为33.1 MPa和70.5 kN/m,与纯MOCA制备的PU相比,硬度下降5 A,力学强度保持在较高值,损耗因子tan δ增加,制备的金属轮毂/PU复合滚轮达到耐久性检测标准,运行噪声降低3 dB.  相似文献   

5.
IPDI基热塑性聚醚聚氨酯弹性体的形态结构与性能   总被引:5,自引:2,他引:3  
采用熔融预聚二步法合成了以环氧乙烷-四氢呋喃无规共聚醚为软段,异佛尔酮二异氰酸酯和1,4-丁二醇为硬段的热塑性取氨酯弹性体(TPU),利用DSC,DMA,TEM,WAXD对聚合物的形态结构进行了表证,并测试了力学性能,结果表明,聚合物具有典型的微相分离特征,随着硬段含量的增加,微相分离程度增加,拉伸强度也随着增加,而延伸率却有降低的趋势,WAXD分析表明,所有TPU均不存在明显的结晶形态,当硬段含量为45%-50%,聚合物的综合性能达到最优。  相似文献   

6.
采用预聚法制备了聚酯类聚氨酯/4A分子筛复合材料,考察了分子筛质量分数和交联系数对聚氨酯弹性体力学性能、耐溶剂性能的影响.结果表明, 4A分子筛的加入量(以质量计)为7%时,聚氨酯弹性体的力学性能提高明显.红外分析表明,4A分子筛的表面与聚酯多元醇链之间具有较强的作用,由DMA分析可知,与纯PU相比,PU/4A复合材料具有更好的微相分离及动态力学性能.  相似文献   

7.
为探究聚氨酯(PU)改性沥青软段结构与其性能之间的关联性,促进PU改性沥青在实际道路工程中的应用,分别选用聚己二酸乙二醇酯二醇(PEA)、聚四亚甲基醚二醇(PTMEG)两种多元醇作为软段结构,以二苯基甲烷二异氰酸酯(MDI)和对二邻氯苯胺甲烷(MOCA)为硬段结构制备PU预聚体及PU改性沥青.采用针入度、软化点及延度试...  相似文献   

8.
采用预聚物法合成了以聚四氢呋喃醚二醇(PTMG)、聚氧化丙烯二醇(PPG)、1, 5-萘二异氰酸酯(NDI)、1,4-丁二醇(BDO)、三羟甲基丙烷(TMP)等为主要原料的双组分浇注型聚氨酯弹性体。通过红外分析、差示扫描量热分析,对NDI型聚氨酯弹性体中存在的氢键进行了深入研究。结果表明,NDI型聚氨酯弹性体的亚氨基(N—H)完全氢键化,羰基(C=O)氢键化程度高,微相分离严重;随着预聚物中异氰酸根含量的增加,硬段微区氢键化程度逐渐提高,其中有序氢键化程度逐渐升高,而无序氢键化程度随之下降;PTMG2000-NDI系聚氨酯弹性体的软段容易产生结晶,而DL2000-NDI系聚氨酯弹性体和PTMG1000-NDI系聚氨酯弹性体的软段无结晶行为;低聚物多元醇的种类及其分子量也是聚氨酯弹性体的氢键的重要影响因素。  相似文献   

9.
以4,4′-二苯基甲烷二异氰酸酯(MDI)和聚四氢呋喃均聚醚(PTMG)为原料合成聚氨酯(PU)预聚体(A组分),三羟基聚醚多元醇(330N)分别与1,4-丁二醇(BDO)或乙二醇(EGO)混合作为扩链剂(B组分),将A、B组分聚合制备PU弹性体。探讨330N/BDO与330N/EGO不同体系以及各体系不同质量比对PU弹性体热性能和机械性能的影响。结果表明,330N/BDO体系的软段玻璃化转变温度(Tgs)较低,硬段熔融热较高,随着330N/BDO质量比的下降,Tgs 上升,硬段熔融热增加;330N/EGO体系的拉伸强度、硬度稍高,而断裂伸长率和滞后损失(tan δ )有较大落差,随着330N/EGO质量比的下降,弹性体的拉伸强度和硬度增加,断裂伸长率和滞后损失降低。  相似文献   

10.
以聚氨酯(PU)为基体材料,N,N-二甲基甲酰胺(DMF)为溶剂,添加4,4'-二羟基偶氮苯,通过相分离法制备PU膜.通过扫描电子显微镜(SEM)、膜性能测试仪、热重分析仪(TGA)及电子万能试验机对PU膜的结构和性能进行了表征.结果表明:4,4'-二羟基偶氮苯的加入使PU膜的大孔结构变得不规则,水通量、截留率、孔隙率和吸湿率均有不同程度的增加,热稳定性略有提高,拉伸强度和断裂伸长率均有不同程度的提高.当4,4'-二羟基偶氮苯的添加量为0.4%时,PU膜的综合性能最优.  相似文献   

11.
透明聚氨酯树脂材料的合成及性能研究   总被引:4,自引:0,他引:4  
以脂(环)族二异氰酸酯(异佛尔酮二异氰酸酯IPDI;4,4-二环已基甲烷二异氰酸酯H12MDI),聚醚多元醇(PPG),小分子交联扩链剂,催化剂及助剂合成了一系列透明聚氨酯树脂材料.用FTIR对树脂材料的结构进行了表征.用DSC,TGA对其热稳定性进行分析测试.用扫描电镜(SEM)对拉伸断裂和冲击断裂样品的断口形貌进行了形态结构分析.结果表明:透明聚氨酯树脂材料具有卓越的光学性能,优良的力学性能和中等的热稳定性能.  相似文献   

12.
预聚法合成聚氨酯/无机粒子复合材料   总被引:4,自引:0,他引:4  
以低聚物多元醇(PTMEG)、甲苯二异氰酸酯(TDI 100)、扩链剂(MOCA)和无机粒子(13X型分子筛,SiO2)为原料,采用预聚法合成出聚氨酯(PU)/分子筛及PU/SiO2复合材料,并对其力学性能进行了测试。结果表明:聚氨酯/分子筛复合材料比纯聚氨酯具有更优良的力学性能,分子筛的加入量为3%~7%(质量分数),扩链系数为0.90~0.95时,其拉伸强度和耐撕裂强度均有明显提高;与PU/SiO2复合材料相比,PU/分子筛复合材料的力学性能和工艺性能更优。  相似文献   

13.
本文采用"预聚-乳化法"合成了软段为聚(ε-己内酯)(PCL)和聚乙二醇(PEG),硬段为异佛尔酮二异氰酸酯(IPDI)和小分子扩链剂的无毒水性可降解聚氨酯(PCLPU),通过红外光谱(FTIR)和差示扫描量热(DSC)曲线分析、偏光显微镜(PLM)观察以及相对分子质量、水接触角和降解失重测定,研究了PEG含量对聚氨酯微相分离程度、软段结晶性能和降解行为的影响。发现随着PEG含量的增加,PCLPU的微相分离程度增加,软段PCL的结晶受到阻碍。材料的亲水性和结晶性对PCLPU的降解影响明显,当PEG和PCL比例(PCLPU50)适当时,所获得的亲水性、酯基含量以及结晶程度均适中,这时材料的降解速率最快。细胞毒性测试表明PCLPU降解液质量浓度低于1mg/mL时,细胞生长正常。此类水性无毒可降解聚氨酯将在生物工程领域具有广阔的应用前景。  相似文献   

14.
以表面功能化的聚丙烯酸酯类复合微球(ACR)、聚己二酸乙二醇酯(PEA)、甲苯二异氰酸酯(TDI-100)、扩链剂(MOCA)为原料,采用预聚法制备出聚氨酯/核壳高分子微球(PU/ACR)新型复合材料。结果表明,当复合微球的添加量(质量分数)为2%~4%时,PU/ACR复合材料的综合力学性能最好;DSC分析表明,该复合微球的加入影响了聚氨酯的微相分离。  相似文献   

15.
实验采用示差扫描量热仪(DSC)、热重分析仪(TGA)、万能材料试验机等手段,研究增塑剂对聚氨酯弹性体结构与性能的影响。研究结果表明,极性增塑剂y-丁内酯(GBL)对微相分离具有较好的促进作用,非极性增塑剂己二酸二辛酯(DOA)对微相分离的促进作用较为微弱;GBL和DOA的加入均能提高聚氨酯材料的耐热性能;GBL和DOA的加入均能降低聚氨酯材料的硬度,其中GBL不降低材料的拉伸强度和撕裂强度,DOA严重损伤材料的拉伸强度和撕裂强度。  相似文献   

16.
聚氨酯软硬链段之间的结晶分相行为严重影响材料的透明性和力学性能。使用二环已基甲烷二异氰酸酯、环氧丙烷聚醚和1,3-丁二醇扩链剂合成的软质透明聚氨酯呈无定形结构,当硬段含量为47%(wt)时,样品具有较好的透明性和力学性能。此时透光率93%,抗张强度18MPa、伸长率358%、邵氏硬度90。样品在放置过程中无变黄现象。  相似文献   

17.
以二苯基甲烷二异氰酸酯、二羟甲基丙酸、1,4-丁二醇、异佛尔酮二异氰酸酯和乙二胺为硬段,聚醚多元醇为软段,通过分子设计采用分步合成法,制备了具有规整硬段和良好分散性能的聚醚型聚氨酯脲(PUU)水分散液。测定了PUU水分散液及其成膜后的物理、力学性能,并表征了这类水性PUU的氢键、结晶和微相分离行为。结果表明:随硬段含量的增加,PUU水分散液的粒径减小,稳定性增加,室温贮存期大于1年;与一步法制备的水性PUU相比,由分步法制备的水性PUU的硬段具有较好的有序结构,氢键化程度高,结晶度大,软硬段间的微观相分离程度高,成膜后具有优异的耐水性能与力学性能。此外,与具有相同规整硬段的聚酯型水性PUU相比,这类聚醚型水性PUU膜显示出更好的耐水性能。  相似文献   

18.
利用傅里叶变换红外技术(FT-IR)首先阐明了本文工作中的聚氨酯氢键缔合程度或微相分离程度与热历史无关,只与样品所处温度有关。其次,利用差示扫描量热法(DSC)探究了升降温过程中出现的热效应,发现热效应所对应的硬段缔合结构与聚合物结晶行为非常相似,例如有缔合核存在下的快速生长、硬段较多时的快速生长、等温退火后生成特定的缔合结构等。综合以上实验结果可以发现,这些缔合结构的行为非常类似于高分子晶体。但与传统观点不同的是,微相分离与这些潜在的类结晶行为是两个独立的过程。  相似文献   

19.
以聚己内酯(PCL)为软段,二苯基甲烷二异氰酸酯(MDI-100)和1,4-丁二醇(BDO)为硬段,通过分子结构设计制备具有优良动态力学性能和低温性能的浇注型聚氨酯弹性体,并将聚氨酯弹性体用于制备免充气轮胎。研究了预聚体NCO(异氰酸酯基)质量分数和软段分子量对弹性体动态力学性能和低温性能的影响。结果表明:当预聚体NCO质量分数为6.0%,分子量1 000和2 000的PCL质量比为15∶10时,合成的聚氨酯弹性体综合性能最佳,此弹性体的玻璃化转变温度为-13.25℃,常温下硬度为85.0 A,拉伸强度为49.21±2.39 MPa,断裂伸长率为(679.26±17.16)%,循环拉伸弹力恢复率为89.96%;动态力学分析结果显示此弹性体的储能模量为17.5 MPa,损耗因子tanδ仅为0.167(25℃)。将该配方制备的弹性体用于制备免充气轮胎,所制备的免充气轮胎通过了轮胎耐久性测试,满足技术要求。  相似文献   

20.
硬段含量对嵌段聚脲结构与性能的影响   总被引:8,自引:0,他引:8  
以端氨基聚醚、异佛尔酮二异氰酸酯(IPD I)、二乙基甲苯二胺(DETDA)为主要原料,制备了一组硬段含量不同的IPD I基聚脲。通过FT-IR、DSC、SEM以及拉伸等测试手段,研究了硬段含量对聚脲羰基氢键化程度、微观结构及其力学性能的影响。结果表明:随着硬段含量的增加,脲羰基氢键化程度增加;软段相的微相分离率降低,硬段有序程度增大。硬段含量为35%时材料的力学性能较佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号