首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过制备氧化石墨烯/聚吡咯/四氧化三铅(GO/PPy/Pb3O4)复合材料,用于构建电化学传感器,以实现对对苯二酚的电化学检测。通过利用π-π共轭效应,实现吡咯单体在氧化石墨烯表面的原位聚合。以GO/PPy纳米复合材料为基底,通过水热反应制备得到具有微/纳结构的GO/PPy/Pb3O4复合材料。以扫描电镜(SEM),傅里叶红外(FTIR)和X射线衍射(XRD)等对复合材料进行表征,用差分脉冲伏安法研究对苯二酚在修饰电极上的电化学行为。通过对比不同修饰电极的电化学传感性能,发现GO/PPy/Pb3O4修饰电极展示了良好的导电性和优异的电催化性能。结果表明,该电化学传感器在1.0~35 μg/L范围内与其氧化峰电流呈良好的线性关系,其检测限为0.3 μg/L。此外,该电化学传感器还具有良好的重现性和稳定性。  相似文献   

2.
采用两步水热法制备NiCo2O4/RGO复合材料,并对其电化学性能进行研究.研究结果表明,当电流密度为1 A/g时,NiCo2O4/RGO复合材料的比电容高达2 332.40 F/g,约是NiCo2O4材料的3倍,当电流密度增加至10 A/g时,其比电容还能保持为1 127.22 F/g,表现出优异的倍率性能.这归因于复合材料特殊的多孔蓬松结构,有效增加了材料的比表面积,NiCo2O4的比表面积为56.488 0 cm2/g,而NiCo2O4/RGO复合材料的比表面积高达188.604 2 cm2/g,能够提供更多的反应活性位点,同时RGO能够有效提高材料的导电性,两者之间的协同作用使得电化学性能大幅提升.  相似文献   

3.
采用水热法制备Fe2O3+RGO-2复合材料,借助X射线衍射(XRD)、傅里叶红外光谱(IR)、扫描电镜(SEM)等分析手段,对样品的微观样貌组成进行表征,并利用恒流充放电、循环伏安、交流阻抗等电化学测试评价其作为超级电容器电极材料的电化学性能。结果表明:Fe2O3+RGO-2复合材料颗粒分散,尺寸均一,在KOH电解液中存在赝电容效应,电化学阻抗小,成型密度高。当扫描速率在5 mV/s时,其比容量可以达256.11 F/g,经500 th次的恒流充放电之后,材料的比电容保持率高。研究结果有助于推动金属氧化物材料在电极材料上的应用,并对氧化铁/石墨烯复合材料的研究具有借鉴意义。  相似文献   

4.
用水热法制备Li4Ti5O12@TiO2复合材料与同样方法制备的尖晶石型Li4Ti5O12进行对比.对2种材料采用扫描电子显微镜、X射线衍射仪、光电子能谱仪(XPS)进行表征;N2吸附-脱附曲线进行比表面积分析;恒电流充放电测试和电化学交流阻抗(EIS)技术进行电化学性能分析.结果表明Li4Ti5O12@TiO2和Li4Ti5O12均呈颗粒状,粒径分别约为50和70 nm.XPS分析显示Li4Ti5O12@TiO2中的Ti为+4价态.电化学测试结果显示Li4Ti5O12复合了锐钛型TiO2...  相似文献   

5.
尖晶石型LiMn2O4正极材料的电压平台高、原料来源丰富、生产成本低廉,但由于Jahn-Teller效应导致晶格畸变和Mn3+歧化分解导致过渡金属锰的溶解严重影响电池的循环性能。本文探究了不同Mg2+掺杂量对LiMn2O4正极材料电化学性能的影响。采用高温固相法制备了LiMg((x))Mn((2-x))O4(x=0,0.01,0.03,0.05)样品,并对其组织结构和电化学性能进行分析。结果表明,所有样品均为立方尖晶石结构,呈截断八面体形貌。电化学性能测试表明,当x=0.03时,LiMg0.03Mn1.97O4样品在0.2 C下具有较高的放电比容量和最高的首次库伦效率(98.44%),循环稳定性最佳;在0.5 C下循环100圈后仍具有119.3 mAh/g的放电比容量,容量保持率高达92.62%。  相似文献   

6.
以价格低廉的Fe3O4纳米颗粒为填料,聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)为基材制备复合材料,并采用高氯酸(HClO4)对其进行后处理,获得PEDOT:PSS/Fe3O4柔性自支撑薄膜。利用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、X射线电子能谱(XPS)、拉曼光谱(Raman)对复合薄膜进行形貌和结构表征,并采用循环伏安(CV)和恒电流充放电(GCD)对其进行电化学性能分析。结果表明:经酸处理的PEDOT:PSS/Fe3O4复合薄膜表面粗糙,电化学性能得到较大提升,且倍率性能较好。在1 A/g时,放电比电容可达106 F/g,远远超出PEDOT:PSS原始膜和未处理的PEDOT:PSS/Fe3O4复合薄膜;在10 A/g时,放电比电容能够保持在81 F/g。  相似文献   

7.
为提高Bi负极材料的循环性能,提出了一种Bi/Bi2O3碳纳米复合纤维(Bi/Bi2O3-CNFs)的合成方法。以Bi2S3纳米棒为模板,采用静电纺丝技术及后续高温热处理方法成功合成了具有纵孔结构的Bi/Bi2O3(w)-CNFs。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、热重分析(TGA)、透射电子显微镜(TEM)和X-射线光电子能谱(XPS)对复合材料进行了表征。讨论了不同质量分数的Bi2S3对复合材料结构以及电化学性能的影响。结果表明:当添加8.7%(质量分数)的Bi2S3时,合成的Bi/Bi2O3(8.7%)-CNFs拥有最佳的电化学储锂性能。当充放电电流密度为0.1 A/g时,Bi/Bi2O3(8.7%)-CNFs复合材料首次放电比容量可达到806 mA·h/g,并能稳定循环1 000次,即使在5.0 A/g的大电流密度下,储锂容量仍有147 mA·h/g。Bi/Bi2O3(8.7%)-CNFs复合结构改善了充放电过程的动力学性能,提高了电化学性能。碳纤维及内部纵孔结构缓解了充放电过程中电极材料的体积膨胀,增强了电池的循环稳定性。  相似文献   

8.
首先采用一步化学法合成了铁氰化镍纳米微粒,将该产物和热还原石墨烯超声分散后制备出性能稳定的石墨烯-铁氰化镍复合物,利用扫描电镜、透射电镜及傅里叶红外技术对石墨烯和石墨烯-铁氰化镍复合物进行了形貌和结构性能表征。采用电化学技术考察了石墨烯-铁氰化镍复合材料对过氧化氢(H2O2)的电催化性能。实验结果表明该电极材料对过氧化氢表现出优异的电催化活性。另外在1×10-4~8×10-4 mol·L-1范围内,峰电流与H2O2浓度呈良好的线性关系。该复合电极材料有望用作灵敏检测过氧化氢的传感平台。  相似文献   

9.
采用高温固相法制备LiNi1/3Co1/3Mn1/3O2,溶胶-凝胶法制备AlPO4包覆LiNi1/3Co1/3Mn1/3O2材料(AlPO4-coated LiNi1/3Co1/3Mn1/3O2).并用XRD、SEM检测等对材料进行了表征,用X-射线衍射、扫描电镜分析以及电化学测试等手段对样品的微观结构、表面形貌和电化学性能进行了研究.结果表明:在AlPO4-coated LiNi1/3Co1/3Mn1/3O2中,AlPO4以无定形态包覆于的表面;AlPO4的存在,阻止了电极与电解质溶液之间的副反应,降低了电极的表面膜阻抗和电荷转移阻抗,加快了锂离子的扩散速度,使得LiNi1/3Co1/3Mn1/3O2的循环性能和倍率性能显著改善.  相似文献   

10.
在N,N-二甲基乙酰胺(DMAc)-水混合溶剂中用沉淀法合成锂离子电池负极材料MnC2O4,利用X射线粉末衍射技术(XRD)、扫描电子显微镜(SEM)、恒流充放电测试和电化学阻抗谱研究反应时间对材料结构、形貌和电化学性能的影响。结果表明:不同反应时间下制备的前驱体为柱状正交结构γ-MnC2O4·2H2O,脱水后转变为介孔柱状正交结构β-MnC2O4。随着反应时间的延长,MnC2O4的粒径增大,比表面积先增大后减小。反应时间为24 h下合成柱状介孔MnC2O4颗粒的比表面为10.369 m2/g,平均孔径约为16 nm,在1、4 A/g下循环150次后的放电比容量分别为998、822 mAh/g,显示出较好的电化学性能。  相似文献   

11.
为了探索制备磁性碳酸钙复合材料的新途径,以Ca(OH)2和CO2为原料,乙二胺四乙酸二钠(EDTA-2Na)为晶型控制剂,通过在高压反应釜中添加Fe3O4纳米粒子,碳化制备了分散均匀、形貌为中空纺锤状的磁性碳酸钙复合材料CaCO3-Fe3O4,采用SEM、XRD、VSM、XPS、TEM等表征方法探究了反应温度、EDTA-2Na添加量等对CaCO3-Fe3O4形貌和性能的影响。结果表明:纺锤状磁性CaCO3-Fe3O4的最佳制备条件为反应温度为120℃、Ca(OH)2的质量分数为2%、EDTA-2Na用量为Ca(OH)2质量的8%、反应时间为2 h、Fe3O4与CaCO3的物质的量比为1∶10,所制...  相似文献   

12.
以SnCl2·2H2O、聚乙二醇400(PEG400)和Na3C6H5O7·2H2O为主要原料,采用简单的水热法制备了SnO2负极材料.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)表征其组成和微观形貌,并采用恒流充放电测试、循环伏安法(CV)对样品进行电化学性能测试.结果表明:添加PEG400可以有效改善SnO2表面形貌,减少其团聚现象并且使其电化学性能明显提高.当添加量为10 mL时,合成的SnO2具有良好的循环及倍率性能,首次放电比容量为2 774 mAh/g,循环50次后放电比容量为600 mAh/g,电化学性能较改性前的SnO2有了明显改善.  相似文献   

13.
我们以KMnO4和石墨烯为原料,通过微波法、水热法和乙醇还原法制备了MnO2/石墨烯复合材料,利用高分辨扫描电子显微镜(SEM)对样品的微观形貌进行了表征分析,并将所得复合材料制备成电极片,组装成超级电容器,采用恒电流充放电(GCD)、循环伏安(CV)、交流阻抗(EIS)在两电极体系下对电极材料进行电化学性能测试。实验结果表明,乙醇还原法所制得复合材料的微观形貌最好,其质量比电容最大可达180.54 F/g。  相似文献   

14.
采用层-层自组装法制备了前驱体RGO/Ni-Co@Ni-foam(泡沫镍负载石墨烯/镍-钴金属化合物),并在高温下煅烧得到RGO/NiCo_2O_4@Ni-foam复合电极材料。运用X射线衍射仪、扫描电子显微镜以及能谱仪对多孔RGO/NiCo_2O_4@Ni-foam复合材料进行结构表征,并通过循环伏安、恒流充放电等测试方法考察了其作为电极材料的电化学性能。结果表明,制备的多孔RGO/NiCo_2O_4@Ni-foam复合电极材料的比电容在电流密度为0.5A/g时可达到444F/g,并且在经过1 000次循环实验后,比电容仍有342F/g。这表明多孔RGO/NiCo_2O_4@Ni-foam复合材料在超级电容器领域具有广阔的应用前景。  相似文献   

15.
采用Ni(NO3)2·6H2O和FeCl3·6H2O混合水热法合成纳米NiFe2O4粉体, 通过X射线衍射(XRD)和透射电子显微镜(TEM)对样品进行表征, 并对其进行充放电循环测试. 实验结果表明: 生成的纳米NiFe2O4粉体为准晶型, 呈球状, 结晶度高, 晶型完好, 粒径分布均匀; 第1,30,50,70次的充放电比容量分别为(997,1 019),(726,750.2),(560.9,578.4),(514.8,528.2)(mA·h)/g, 表明NiFe2O4具有较好的电化学稳定性.  相似文献   

16.
首先用水热法制备了Fe3O4纳米球,然后以制备的磁性Fe3O4纳米粒子为磁核,在高温高压反应釜中与葡萄糖反应,使其表面包覆一层聚糖,利用聚糖的还原性,让包覆后的粒子与AgNO3反应,制备出Fe3O4/Ag纳米复合粒子。用透射电镜(TEM)、X射线衍射仪(XRD)对所制备的材料的形貌和结构进行了表征。通过抑菌实验的测定,结果表明Fe3O4/Ag复合材料具有良好的抑菌活性。  相似文献   

17.
采用简易的高分子网络凝胶法首先制备了微量Ag掺杂的ZnO,进而分别复合CuO、Mn2O3和Ag,得到了Zn(Ag)O-CuO、Zn(Ag)O-Mn2O3和Zn(Ag)O-Ag纳米复合材料.X射线衍射(XRD)测试表明氧化物或Ag的复合使ZnO的结晶性变差;扫描电镜(SEM)观察到氧化物(CuO、Mn2O3)的复合使ZnO颗粒尺寸变大,而Ag的复合则使颗粒变小且更均匀;X射线光电子能谱(XPS)揭示氧化物(CuO、Mn2O3)的复合引入更多的氧空位缺陷,而Ag的复合则晶格氧更多;表面光电压(SPV)光谱证实Zn(Ag)O-Ag比Zn(Ag)O-CuO、Zn(Ag)O-Mn2O3的光生载流子分离能力更强.在模拟太阳光照射下,Zn(Ag)O-Ag对亚甲基蓝降光催化解速率最高,归因于较小的颗粒尺寸与良好ZnO-Ag异质结的形成.虽然CuO和Mn2O  相似文献   

18.
以无水乙醇为溶剂,醋酸锂、钛酸丁酯和石墨为原料,采用湿法制备了Li4Ti5O12/石墨复合材料.采用X-射线衍射、红外光谱、扫描电镜和电化学测试等对合成产物进行了表征.结果表明:600 ℃氩气气氛中煅烧6 h可制得碳质量分数5%左右的Li4Ti5O12/石墨复合材料,其可逆容量达到167.1 mAh·g-1;经80次循环后,0.1C放电时,容量保持率为99.0%,2.0 C放电时容量保持率达到105.1%.与纯Li4Ti5O12相比,Li4Ti5O12/石墨复合材料具有更好的循环性能和倍率性能,是一种优良的锂离子电池负极材料.  相似文献   

19.
以Li2CO3,TiO2为原料,无水乙醇为分散剂,采用高温固相法,通过两步煅烧方式制备出不同煅烧温度下的Li4Ti5O12粉末材料.采用X射线衍射(XRD)、扫描电镜(SEM)表征材料的结构和形貌,采用恒电流充放电、交流阻抗和循环伏安等方法测试材料电化学性能.结果表明:在800 ℃下煅烧6 h后可得到晶型完整的纯相Li4Ti5O12,其颗粒均匀分布在200~400 nm.Li4Ti5O12在0.5C倍率下首次可逆比容量为157.67 mA·h/g,库伦效率为96.1%,经过100次循环充放电后容量保持率为98.63%;在5C倍率下首次可逆比容量为107.0 mA·h/g,经过1 000次循环充放电后容量保持率为84.1%.  相似文献   

20.
以醋酸锂、醋酸锰和硝酸银为原料,采用柠檬酸络合燃烧法制备LiMn2O4/Ag复合材料.通过X射线衍射、扫描电子显微镜、恒电流充放电以及交流阻抗技术分析和检测合成产物的物相、形貌及电化学性能.结果表明:LiMn2O4/Ag复合材料由LiMn2O4和金属Ag组成,银均匀地分布在LiMn2O4颗粒中;与LiMn2O4相比,LiMn2O4/Ag复合材料具有更高的比容量、更高的库伦效率和更低的极化;Ag的添加可提高LiMn2O4的循环性能,尤其是高倍率充放电循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号