首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
生物炭负载纳米铁(BC@nZVI)是一种新型的高效非均相活化材料,可活化过硫酸盐(PS)进行原位化学氧化,去除焦化场地等复杂污染场地中的多环芳烃。针对BC@nZVI活化PS对菲(PHE)降解性能及影响因素,基于液相还原法制备BC@nZVI,采用BET比表面积测试、扫描电子显微镜、透射电子显微镜、X射线衍射技术、傅里叶变换红外光谱等表征BC@nZVI的孔隙结构、表观形貌、元素分布、结构形态、物相组成、官能团等特性,研究BC@nZVI铁碳比、BC@nZVI投加量、PHE初始浓度、PS浓度等因素对BC@nZVI活化PS降解PHE的影响。采用准一级动力学模型评估PHE的降解动态,采用电子顺磁共振(EPR)确定BC@nZVI/PS体系中的自由基。研究结果表明,BC可有效负载nZVI并缓解nZVI的团聚,有利于提高对PS的活化效率;铁碳比为1:4(质量比)的BC@nZVI活化PS降解PHE的效果最优,在PHE初始质量浓度为1 mg/L、PS浓度为1.6 mmol/L、BC@nZVI投加量为0.6 g/L的最佳条件下,PHE的降解率达到94.59%。PHE的降解率随着PHE初始质量浓度的升高而降低;...  相似文献   

2.
以凹凸棒土为载体,结合硫化改性方法制备了凹凸棒土负载硫化纳米零价铁(S-nZVI@ATP)复合材料,通过As(III)静态吸附试验,确定了去除As(III)效果最佳的S-nZVI@ATP复合材料制备条件:nZVI/ATP质量比为2∶1、以Na2S2O3为硫化剂、S/Fe摩尔比为1∶4,并考察了As(III)溶液初始pH、溶解氧浓度及环境温度对该复合材料去除水中As(III)效果的影响。结果表明,经过凹凸棒土负载及硫化改性后,nZVI的颗粒团聚状况明显得到改善。在实验条件范围内,适中的溶液pH值、溶解氧浓度以及较高的环境温度均有利于S-nZVI@ATP复合材料对As(III)的去除,该吸附过程为吸热反应,符合拟二级动力学模型,外扩散阶段主要受环境温度影响,吸附过程由颗粒内扩散和膜扩散共同控制。  相似文献   

3.
零价铁去除含铀废水中的铀   总被引:1,自引:0,他引:1  
通过序批实验,研究了零价铁(ZVI)对合铀废水中铀的去除效果,考察了零价铁投加量、U初始浓度、溶液pH、温度及反应时间等因素的影响,结果表明ZVI对含铀废水中的U(Ⅵ)有较好的去除效果,零价铁的投加量、溶液的pH和U(Ⅵ)的初始浓度对铀的去除率影响较大,投加量为0.05g·(50mL)^-1,pH=4时U(Ⅵ)的去除效率最佳,能达到98.5%,而温度对其影响则相对较小.SEM和XRD对零价铁表征表明在反应过程中发生了铁表面的腐蚀以及新的晶体的形成,零价铁处理含铀废水的主要机制可能为UO2^2+的还原沉淀.  相似文献   

4.
活性炭负载纳米零价铁去除溴酸盐的研究   总被引:1,自引:0,他引:1  
实验采用液相还原法制备活性炭负载纳米零价铁材料(nZVI/AC),并利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等对其结构进行表征.考察了不同反应条件下nZVI/AC对BrO3-的去除效率,并研究其去除机理.结果表明nZVI/AC具有很高的表面反应活性,且nZVI和活性炭(AC)之间存在协同作用. BrO3-的去除效率随 pH 值的减小而增大, 共存离子NO3-和SO42-对其去除率影响不大但降低了去除速率.机理分析表明BrO3-被nZVI/AC吸附而使局部BrO3-浓度升高,并被nZVI迅速还原为无毒的Br-.  相似文献   

5.
研究了铀溶液初始pH、HCO-3质量浓度和硫化纳米零价铁(sulfidized nano-scale zerovalent iron,SnZVI)投加量对SnZVI去除铀的动力学过程的影响,并通过SEM、XRD和XPS阐明SnZVI去除铀的机理。球形SnZVI颗粒直径为100~200 nm,比表面积为43.5 m2/g。SnZVI颗粒中含有Fe和FeS,且Fe(0)和Fe(Ⅱ)含量超过80%。SnZVI去除铀的动力学过程符合准一级动力学模型。增加SnZVI投加量,反应后溶液中铀质量浓度低于0.05 mg/L,但是pH升高及HCO-3质量浓度增加导致SnZVI去除铀的速率降低。SnZVI去除铀的负荷达到2 452.92 mg/g,且反应后颗粒中约85%的铀为U(IV)和U(V)。研究结果表明,SnZVI可通过表面官能团的吸附作用及Fe(0)的还原作用快速分离水溶液中的铀。  相似文献   

6.
针对纳米零价铁易团聚及表面形成钝化层的缺点,本文以凹凸棒土为载体、以硫代硫酸钠为硫化试剂,制备了凹凸棒土负载硫化纳米零价铁(S-nZVI@ATP)复合材料,并考察了复合材料对水中Cu(Ⅱ)的去除效果。由SEM可观察到,经过凹凸棒土负载及硫化改性后的纳米零价铁串珠状结构变短,且被分散为单个的球形颗粒;比表面积测定结果表明,S-nZVI@ATP复合材料的BET比表面积为46.04m~2/g,与纳米零价铁相比提高了约1.35倍;由TEM观察到,经硫化的纳米零价铁颗粒界面处包裹了一层FeS,粒径由57.6nm增至118.5nm。S-nZVI@ATP复合材料去除水中Cu(Ⅱ)的机理主要是硫化纳米铁界面处的Fe~0将Cu~(2+)还原为Cu~0以及FeS转化为溶度积更小的CuS,该过程符合Langmuir-Hinshelwood吸附/还原模型和Langmuir等温吸附模型。本实验条件下,复合材料对Cu(Ⅱ)的最大吸附-还原量可达9.25mmol/g(587.8mg/g)。  相似文献   

7.
以菠萝皮制成的生物炭为载体负载纳米零价铁(n ZVI)合成功能性生物炭(n ZVI/BC),采用X射线衍射(XRD)、扫描电镜(SEM)和X射线光电子能谱(XPS)等方法对材料进行表征,考察了p H和初始Cr(Ⅵ)浓度对Cr(Ⅵ)的去除率的影响,并对其机理进行研究。结果表明:n ZVI/BC对Cr(Ⅵ)的去除效率在p H=3时达到峰值90. 3%,而在p H=9时去除效率最低。吸附动力学实验数据符合准二级动力学(PSO)模型;当Cr(Ⅵ)的初始浓度由10 mg/L增加到30 mg/L时,速率常数由0. 466 0 min-1减小到0. 237 1 min-1,说明反应速率随着溶液Cr(Ⅵ)初始浓度的增大而减小。SEM图像显示n ZVI与生物炭的表面结合良好。反应前后的XRD和XPS分析表明,在反应过程中,n ZVI和Cr(Ⅵ)发生吸附,还原和共沉淀。因此,菠萝皮生物炭负载n ZVI可作为水中Cr(Ⅵ)去除的有效复合材料。  相似文献   

8.
壳聚糖-纳米零价铁球去除水中二价镉的研究   总被引:2,自引:0,他引:2  
为了更好地利用纳米零价铁修复水体镉污染,以壳聚糖为载体,制备出壳聚糖-纳米零价铁球用以去除水中的镉(Cd(Ⅱ)).利用扫描电子显微镜和透射电子显微镜对壳聚糖-纳米零价铁球进行表征分析,通过对比与Cd(Ⅱ)溶液反应前后的样品的X线光电子能谱探讨壳聚糖-纳米零价铁球对Cd(Ⅱ)的去除机理,并进行批实验研究环境因素对去除效果的影响.研究结果表明:制备出的壳聚糖-纳米零价铁球为规则均一的黑色球体,粒径约为3.1 mm;所有壳聚糖-纳米零价铁球均具有多孔结构,平均孔径约为40.6μm,且纳米零价铁均匀分布在球内;壳聚糖-纳米零价铁球对Cd(Ⅱ)的去除机理包括物理吸附过程和化学还原过程,且化学还原过程起主要作用;批实验结果显示壳聚糖-纳米零价铁球对Cd(Ⅱ)的去除率随pH值、反应温度和纳米零价铁投加量的增加而增大,随Cd(Ⅱ)初始质量浓度的升高而减小.  相似文献   

9.
尽管纳米零价铁(nZVI)能够有效地去除甲硝唑(MNZ),但是仍然存在矿化率低的问题. 本文,合成了纳米零价铁,研究了H2O2投加量对甲硝唑及其总有机碳(TOC)去除的影响. 结果表明,在nZVI和H2O2的共同作用下不仅可以进一步加速甲硝唑的去除速率,而且其TOC的去除率也明显提高.当双氧水投加量为0.55g/L,TOC的去除率为45.87%,约为单独纳米零价铁的18倍. 相同反应条件下,与传统芬顿法相比,nZVI/H2O2体系下甲硝唑及其TOC去除率,分别约为Fe2+/H2O2芬顿体系的1.5倍和7.1倍. 因而,双氧水与纳米零价铁协同作用,不仅进一步加速了纳米零价铁对甲硝唑去除速率,而且还有效地提高了有机物的矿化率.  相似文献   

10.
为合理利用芒果皮和贝壳类废弃物资源并有效缓解水体中甲基橙的污染问题,利用废弃芒果皮和贝壳绿色合成贝壳基纳米零价铁复合材料.利用Folin-Ciocalteu法、1,1-二苯基-2-三硝基苯肼(DDPH)自由基清除能力和铁还原能力以及紫外-可见光谱(UV-Vis)测试结果优化材料制备工艺,并利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、红外光谱(FTIR)表征材料结构,同时研究了材料对水中甲基橙的去除效果.结果表明:利用芒果皮提取液成功制备了纳米零价铁,其大多为球形和椭圆形颗粒;负载贝壳后有效地分散并稳定了纳米粒子,降低了纳米零价铁的聚集程度;当反应温度为45℃,投加量4 g/L,甲基橙初始质量浓度为800 mg/L时,贝壳基纳米零价铁对于甲基橙的去除率达到93.66%.  相似文献   

11.
以FeC12·4H2O和NaBH4为原料,凹土为载体,采用液相还原法制备凹土负载零价铁,并用扫描电子显微镜(SEM)及X射线衍射(XRD)进行表征.考察了Cr(VI)溶液初始浓度,pH,凹土负载零价铁投加量及反应时间等条件对Cr(VI)去除效果的影响.结果表明,Cr(VI)的去除率随反应时间和凹土负载零价铁投加量增加而升高,而随pH和Cr(VI)溶液初始浓度升高而降低;凹土负载零价铁对Cr(VI)的还原去除基本符合伪一级反应动力学模型.凹土负载零价纳米铁Cr(VI)的良好去除效果表明其在地表水原位修复领域具有较好的应用前景.  相似文献   

12.
改进液相还原法制备纳米零价铁颗粒   总被引:3,自引:1,他引:3  
纳米零价铁颗粒具有优越的吸附性能和很高的还原活性,因此在环境污染的处理和环境修复领域应用广泛.采用一种改进液相还原法制备纳米零价铁颗粒,通过添加高分子分散剂聚乙烯吡咯烷酮(PVP)和乙醇对纳米铁颗粒进行表面物理改性,从而达到改善其在水溶液中分散性的目的.实验过程中,机械搅拌条件下,将一定浓度的NaBH.水溶液(或乙醇-水混合溶液)迅速添加到一定浓度的FeSO,·7H2O水溶液(或乙醇-水混合溶液)中,短时间即可产生大量铁粉.过程无需氮气保护,反应迅速;采用透射电子显微镜(TEM),X射线衍射(XRD),比表面测定仪(BET)三种方法对制得的纳米铁颗粒进行表征.TEM表征的结果表明:颗粒分散较均匀,粒径小,平均粒径为60 nm(水溶液)和40 nm(乙醇-水混合溶液),实验过程中添加的聚乙烯吡咯烷酮对颗粒的分散起到了很好的改善作用,其机理主要是通过分散剂吸附改变粒子的表面电荷分布,产生静电稳定效应,空间位阻作用和静电空间位阻稳定效应来达到分散效果;加入乙醇后,可能是由于乙醇中包含大量的自由的强极性羟基基团,在水溶液中这些基团与金属离子之间形成螯合键,紧密包覆在金属离子周围,形成一个有限制形状的有限结构,使合成的纳米粒子的大小被限制,从而达到改性的目的.XRD表征的结果表明:在扫描衍射角度(2θ)为30°~100°时,出现衍射峰时对应的2θ分别为45°、65°、82°左右,对照铁的标准PDF卡片发现,刚好对应相应的110晶面衍射(44.673 2°),200晶面衍射(65.021 1°),211晶面衍射(82.332 6°),同时通过布拉格方程及电子衍射花样的分析,均表明颗粒为单质铁,没有出现氧化铁杂质、纯度高.采用BET表征的结果表明:颗粒的比表面积为47.1 m2/g(水溶液)和68.41 m2/g(乙醇-水混合溶液),远远高于普通铁粉的比表面积.多次试验的结果表明:该方法工艺非常稳定.  相似文献   

13.
通过液相还原法制备出纳米零价铁,将它负载于沸石表面制成负载型纳米零价铁复合材料(Z-n ZVI).采用扫描电镜法(SEM)和BET法对材料进行了表征,考察了不同的温度、反应时间、U(VI)初始浓度、样品投加量对该材料对U(VI)去除效果的影响.结果表明:纳米零价铁颗粒均匀的分布在沸石的表面上,其粒径在40~80 nm左右;在p H为4.5,温度为30℃,接触时间为60 min,样品投加量为0.5 g/L条件下,U(VI)的去除率和吸附容量达到96.7%和48.5 mg/g.该复合材料对水溶液中的U(VI)有较好的去除效果,有望在实际应用中解决含铀废水难以处理的问题.  相似文献   

14.
通过液相还原法合成了粒径在100~200 nm之间的类球形纳米零价铝(nZVAl)颗粒.合成的nZVAl能在较广的pH范围(2.5~10)内有效活化过硫酸盐(PS)降解卡马西平(CBZ).结果表明:在初始pH=3,PS浓度为0.5 mmol·L~(-1),nZVAl质量浓度为0.15g·L~(-1)条件下反应30 min后,CBZ的去除率达到94.3%,优于商品铝粉;PS浓度上升会促进nZVAl的腐蚀,提高CBZ的降解效率;SO_4~(2-)腐殖酸(HA)的存在会抑制CBZ的降解效率,而Cl~-的存在显著促进CBZ降解;nZVAl/PS体系中产生的SO_4~(·-)是降解CBZ的主要活性自由基;X射线光电子能谱(XPS)分析表明Al~0是nZVAl中活化PS的主要成分,并且nZVAl表面氧化层钝化为Al_2O_3是反应后续降解效率降低的主要原因.  相似文献   

15.
纳米零价铁具备零价铁的特性,由于其纳米级尺寸,具有量子尺寸小于及更高的反应活性.该论文通过设计系列实验,包括纳米零价铁的合成、表面化学性质测定(X-射线光电子能谱)、晶体结构测定(x-射线电子衍射)和材料粒径及表面结构测定等(透射电子显微镜),存在于水环境中后水质参数(pH和ORP)的变化来学习有关水化学的基本概念.使得研究生同学通过一种材料的表征研究、掌握环境化学研究基本知识,务实科研基础.  相似文献   

16.
以高炉瓦斯泥为原料,采用气相-湿化学法二步法制备纳米级零价铁,研究了气相还原和湿法化学还原两步过程的影响因素.为了讨论制备纳米级零价铁的最佳工艺条件,结合X衍射、扫描电镜等检测手段对不同制备工艺条件下的制品进行分析,最终得到二步法制备纳米级零价铁的最佳工艺条件:气相还原条件下,在平铺料密闭容器中1000℃煅烧保温2小时;湿化学法中,KBH44溶液的加入速度为1~2 mL/s,搅拌速度小于1000 r/min时,搅拌速度越大,溶液的分散性越好.  相似文献   

17.
18.
19.
以高炉瓦斯泥为原料,采用气相-湿化学法二步法制备纳米级零价铁,研究了气相还原和湿法化学还原两步过程的影响因素。为了讨论制备纳米级零价铁的最佳工艺条件,结合X衍射、扫描电镜等检测手段对不同制备工艺条件下的制品进行分析,最终得到二步法制备纳米级零价铁的最佳工艺条件:气相还原条件下,在平铺料密闭容器中1000℃煅烧保温2小时;湿化学法中,KBH44溶液的加入速度为1~2 mL/s,搅拌速度小于1000 r/min时,搅拌速度越大,溶液的分散性越好。  相似文献   

20.
以石榴皮提取物为还原剂和稳定剂,绿色合成了纳米零价铁(GS-nZVI)。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、热重分析(TGA)等表征手段对GS-nZVI的物理化学性质进行了表征,结合粒径、Zeta电位测试结果和化学平衡基本原理,讨论了合成条件(如反应时间、铁盐浓度、提取物多酚的质量浓度)对GS-nZVI粒径和产率的影响,并提出了可能的合成机理。结果表明:石榴皮提取物合成的GS-nZVI呈无定型结构,提取物中多酚类物质不仅能把亚铁盐(Fe2+)还原为零价铁(Fe0),而且可作为稳定剂包覆在GS-nZVI表面,提高纳米粒子分散性。反应时间为120 min,Fe2+浓度为0.05 mol/L,多酚的质量浓度为15 mg/mL时合成的GS-nZVI粒径、产率综合结果最优,其产率为24.45%、粒径分布主要集中在213 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号