首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
§1.引言 设w=f(z)=z+a_2z~2+……这个函数在单位圆|z|<1中是正则单叶的,它把单位圆照相成一个凸区域,那末函数f(z)叫做凸像函数。这种函数显然要满足条件 设w=f(z)=z+a_2z~2+……这个函数在单位圆|z|<1中是正则单叶的,对于任何rε(0,1),它把圆|z|=r照相成这样一个闭曲线,它包含点w=0,并且与每一条通过点w=0的直线相交成一个线段,那末函数f(z)叫做星像函数,这种函数显然要满足条件  相似文献   

2.
设函数f(z)在单位圆|z|<1上单叶解析。它把单位圆片共形映射为凸形区域,则称f(z)为单位圆|z|<1上的凸像函数;设函数g(z)为单位圆|z|<|引上单叶解析,它把单位圆片共形映射为关于原点成星形区域,则称g(z)为单位圆|z|<1上的星像函数. J·Clunie和 F·R·Keogh在[1]中证明了函数f(z)=z+bz2在|z|<1上成凸像的充要条件为James·Frankd在[2]中证明了函数f(z)=z+bz2+cz2(其中b、c为正实数)在|z|<1成凸像的充分条件为本文证明了函数f(z)=z+bz2+cz2+dz4(其中b、c、d为正实数)在|z|<1上成凸像的一个充分条件,它包含了上述两个结果,同…  相似文献   

3.
设f(z)=z+sun(a_νz~(ν))fromν=2to∞是单位圆|z|<1中的解析函数,记这种函数的全体为 N.MacGregor 研究了 N 中函数 f(z) 的单叶性,得到下述结果:只要有|z|<1中的单叶函数 g(2)∈N(即 g(z)∈S),使得 Re{f(z)/g(z)}>0,那末f(z)必在|z|≤1/5中是单叶的.本文就 g(z) 属于S的一个子族,把上述结果加以改善.我们约定:  相似文献   

4.
一.引言设函数f(z)在单位圆|Z|<1上单叶解析,它把单位圆片共形映射为凸形区域,则称f(z)为单位圆|z|I<1上的凸像函数。  设函数g(z)=z+是圆|z|<1上的凸像函数,它的n阶de  la  valee  ponssin平                             n=2均由下式定义[1]:    它们都是凸像多项式。特别当n=1,2,3.4时它们分别是设 和g+(z)=z+是两个幂级数,它们的 Hadamard乘积是指n=2 n=2幂级数记为n=2设函数f(z)=z+Z  anzn在单位圆|Z|1<1上解析,而函数F(z)在单位圆|Z|<1上单叶 n=2解析。如果f(。)=F(。),…  相似文献   

5.
设 f(z)=z+(?)a_nz~n 在|z|<1内解析,若 Re f(z)/z>0则说 f(z)∈S。1966年 Yamaguchi 在[1]中研究了 S_0类函数,得到如下结果。定理 A.若 f(z)∈S_0则Ref′(z)≥(1-2r-r~2)/(1+r)~2,0≤r≤(?)-1.结果是准确的。由此便证明了下述定理以及一些已知结果。定理 B、若 f(z)∈S_0,则S_n(z)=z+a_2z~2+…+a_nz~n在|z|<1/4内单叶(n=2,3…)本文用另一方法证明定理 A,且结果要多一些,并得到比定理 B 更强的结果,即 S_n(z)在|2|<1/4内关于 w=0成星形.我们先叙证如下引理.  相似文献   

6.
证明存在非常数多项式P1(z) =ζ1zn+… ,P2 (z) =ζ2 zn+…和级小于n的整函数Q ,0 <ζ2 / ζ1<1使方程 f″+(eP1(z) +eP2 (z) +Q) f =0有非平凡解 f满足λ(f)≤n .回答了K .Ishizaki提出的问题  相似文献   

7.
应用Nevanlinna理论的基本方法,研究了两类差分函数g(z)=f(z+c1)+f(z+c2)-2f(z)和g2(z)=f(z+c1)f(z+c2)-f 2(z)以及差商g/f,g2/f 2的不动点问题,在假设f为级小于1的超越亚纯函数的条件下,证明了以上函数都具有无穷多个不动点,补充了已有的结果.  相似文献   

8.
单位圆|z|<1中正则单叶函数 f(z)=z+…的全体成一函数族 S.设圆|z|<1关于 W=f(z)的映照区域为 D_f.设ε是一实数,点 W_k=α_k(f)e~i(k=1,2,…,n)是最靠近原点的 D_f 的境界点,记,0≤ε<2.舍苟求数量的问题(舍苟问题)为拉夫连捷夫和舍别列夫所解决,其后  相似文献   

9.
某类二阶微分方程解的增长级及零点   总被引:3,自引:3,他引:0  
研究了P(z) =-mzn+an -1zn -1+… +a0 ,m >0为实常数 ,A(z)为超越整函数时 ,方程f″ +eP(z) f′+A(z)f=F与对应齐次方程f″+eP(z) f′ +A(z)f=0的解的增长级和零点收敛指数 .  相似文献   

10.
本文主要研究了全纯函数的差分算子分担一个值的唯一性问题,并且得到了:若f与g为超级ρ2<1的两个非常数的超越全纯函数, n,k,m为满足n≥5k+4m+13的整数, c是满足f(z+c)-f(z)≠0且g(z+c)-g(z)0的非零常数,则若f(z)n(f(z)m-1)(f(z+c)-f(z))(k)与g(z)n(g(z)m-1)(g(z+c)-g(z))(k)IM分担1, 则f=tg, 其中t为满足tn+1=1与tm=1的常数.  相似文献   

11.
研究了高阶线性微分方程f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z).ep0(z)f=0和f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z)ep0(z)f=F(z)解的增长性问题,其中pj(z)=ajzn+bj,1zn-1+…+bj,n,Aj(z)和F(z)是有限级整函数.针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计.  相似文献   

12.
记单位圆盘E={z||z|<1)中满足条件f(0)=0和f~(?)(0)=1的解析函数f(z)组成的类为A。设f(z)=z+sum from k=2 to ∞ a_kz~k∈A,δ≥0,St.Ruscheweyh在[1]中定义邻域N_s(f)如下: N_δ(f)={g(z)=2+sum from k=2 to ∞ b_kz~k|sum from k=2 to ∞ k|a_k-b_k|≤δ}。[1],[2]研究了使得N_δ(f)中所有函数g(z)含于E中某单叶函数类的条件。本文的目  相似文献   

13.
§1.引言设函数 f(z)=z+sum from n=2 to ∞ a_nz~n∈S是单位圆内的单叶解析函数,函数 f_1(z)=sum from n=1 to ∞ a_(2n-1)z~(2n-1),|z|=γ<1,(一)戈鲁净对 f(z)及 f_1(z)有下面准确的估计(1):|f(z)|+|f(-z)|≤γ/((1-γ)~2)+γ/((1+γ)~2) (1)|f′(z)|+|f′(-z)|≤(1+γ)/((1-γ)~3)+(1-γ)/((1+γ)~3) (2)|f_1(z)|≤γ(1+γ~2)/((1-γ~2)~2),|f′_1(z)|≤(1+6γ~n+γ~4)/((1-γ~2)~3),|(zf′_1(z))/(f_1(z))|≤(1+6γ~2+γ~4)/(1-γ~4) (3)本文将证明:设 f(z)=z+sum from n=2 to ∞ c_nz~n 是星形单叶函数,F(z)=z+sum from n=2 to ∞ a_nz~n 是凸形单叶函数,函数 F_1(z)  相似文献   

14.
运用Nevunlinna值分布理论和整函数的相关理论,研究了2类不同系数的2阶线性微分方程解的增长性.假设A(z)=h(z)eP1(z),其中P1(z)是m次多项式,h(z)是ρ(h)m的整函数,B(z)是1个级为ρ(B)≠m的超越整函数,证明了方程f″+Af'+Bf=0的每1个非零解都是无穷级;又假设A(z)是方程f″+P2(z)f=0的非零解,其中P2(z)是n次多项式,B(z)是Fabry缺项级数且2ρ(B)≠n+2,也证明了方程f″+Af'+Bf=0的每1个非零解都具有无穷级.  相似文献   

15.
研究了一类差分函数gn(z)=f(z+c1)+f(z+c2)+…+f(z+cn)-nf(z)以及差商函数G n(z)=g n(z)f(z)的不动点问题.在假设f的增长级小于1的条件下,分别就f为超越整函数和超越亚纯函数的情形,证明了函数g n(z)和Gn(z)都具有无穷多个不动点,进一步在λ(1/f)=σ(f)的假设下,得到了g n(z)的不动点收敛指数的估计.  相似文献   

16.
利用Nevanlinna理论研究一类涉及分担函数的亚纯函数族的正规性,得到一个与分担函数相关的正规定则.设k是一个正整数,F是区域D内的亚纯函数族.若对任意的f∈F,其零点重级至少为k,且满足:1)f(z)=0f(k)(z)+∑i=1kbi(z)f(k-i)(z)=a(z);2)f(k)(z)+∑i=1kbi(z)f(k-i)(z)=a(z)■0|f(k+1)(z)+b1(z)f(k)(z)-a′(z)||a(z)|.其中a(z)(a(z)≠0),bi(z)(i=1,2,…,k)是区域D内的全纯函数.则F在区域D内正规.  相似文献   

17.
假设f(z)是超越亚纯函数,其级σ(f) =σ<1.利用了Nevanlinna理论的基本方法,研究了差分函g(z)=f(z+c1)f(z+c2)f(z+c3)-f3(z),以及差商函数G(z)=g(z)/f3(z)的零点及零点收敛指数问题,证明了λ(g)=σ(g)=σ和λ(G)=σ(G)=σ.  相似文献   

18.
设f(z)=z+sum from v=1 to∞(a_vz~v)是单位圆|z|<1内的解析函数,用N记这种函数的全体.MacGregor研究了N中函数f(z)的单叶星象性,得到若干结果.本文推广了这些结果.1.概念与记号设f_p(z)=z+sum from k=1 to∞(a_(kp)+1~z~(kp+1))是|z|<1内的p次对称单叶解析函数,其全体记为S_P(P=1,2,…).特别简记S_1=S.如果f_(z)∈S_p,且有β∈[0,1)使得Re{zf′_p(z)/f_p(z)}>β(|z|相似文献   

19.
在本文中,亚纯函数是指在整个复平面上的亚纯函数.本文是利用复分析的值分布理论来研究亚纯函数的唯一性.设f(z)和g(z)是两个亚纯函数,当fn(z)f′(z),gn(z)g′(z)分担1或者z CM时,前人给出了下面的定理:定理A设f(z)和g(z)是两个非常数亚纯函数,n≥11是一个正整数,如果fn(z)f′(z),gn(z)g′(z)分担1CM,则f(z)=c1ecz,g(z)=c2e-cz,这里c1,c2和c是3个常数且满足(c1c2)n+1c2≡-1;或者f(z)≡tan(z)其中t是一个常数满足tn+1=1.定理B设f(z)和g(z)是两个非常数亚纯函数(整函数),n≥11(n≥6)是一个正整数,如果fn(z)f′(z),gn(z)g′(z)分担z CM,则f(z)=c1ecz2,g(z)=c2e-cz2,这里c1,c2和c是3个常数且满足4(c1c2)n+1c2≡-1;或者f(z)≡tan(z)其中t是一个常数满足tn+1=1.在本文中,我们推广了上述定理,证明了下面的结论:设p(z)为n1次多项式,f(z)和g(z)是两个超越亚纯函数,n≥max{11,2n1+2}是一个正整数,如果fn(z)f...  相似文献   

20.
研究了有穷级亚纯函数f(z)与其移动f(z+c)按权l分担一个小函数a(z)时的唯一性问题,其中c为非零常数.针对当l≥2,l=1和l=0时3种情况,得到f(z)的相应值分布性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号