首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
烟气含氧量是影响火电厂锅炉运行安全性和经济性的一个重要因素,影响锅炉烟气含氧量的因素多面复杂,对烟气含氧量特性进行建模与控制是实现锅炉正常运行的基础.借助现场运行数据,根据锅炉烟气含氧量的特性,建立基于最小二乘支持向量机(LSSVM)的锅炉烟气含氧量预测模型.在此基础上结合全局寻优的混合粒子群算法(PSO),对锅炉烟气含氧量进行控制.仿真结果表明:该方法能够比较准确地列火电厂锅炉烟气含氧量进行测量和控制,为锅炉燃烧系统的闭环控制与优化运行提供了新的手段.  相似文献   

2.
基于改进蚁群算法优化参数的LSSVM短期负荷预测   总被引:5,自引:0,他引:5  
提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法.该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到模型的最优参数,得到基于MACO算法优化的LSSVM(MACO-LSSVM)预测模型.将优化后的LSSVM模型应用于短期电力负荷预测问题,选择湖南某地区日期为2009-08-01至2009-08-30各小时点的数据进行分析,对2009-08-31该日24 h的负荷进行预测,并与BP神经网络和SVM模型进行比较.研究结果表明:本文方法得到的均方根相对误差为1.71%,比用BP神经网络和SVM模型得到的均方根相对误差分别低1.61%和1.05%.  相似文献   

3.
徐松金 《科学技术与工程》2012,12(27):6955-6959
针对LSSVM预测模型参数难以确定的问题,利用差分进化(DE)算法的收敛速度快和全局优化能力,优化LSSVM模型的惩罚因子和核函数参数,避免了人为选择参数的盲目性。将优化后的LSSVM模型应用于中长期径流预测问题。选取黄河三门峡站1919年至1992年径流量实测数据进行分析和训练,对1993年至2002年的年径流量进行预测,并与BP神经网络和SVM模型进行比较。研究结果表明,该模型具有较高的预测精度。  相似文献   

4.
最小二乘支持向量机(least square support vector machines,LSSVM)在解决小样本、非线性和高维度问题中表现出许多特有的优势.但是,如果输入的训练数据本身存在着大量的噪声和冗余,LSSVM在训练数据时会因抑制它们而削弱本身的推广能力,结构风险无法达到最小化,从而导致收敛速度慢、预测精度不高等缺点.提出了一种基于免疫模糊聚类(immune fuzzy clustering,IFC)的最小二乘支持向量机预测模型,运用免疫模糊聚类算法对历史数据进行预处理,从聚类后的数据提取LSSVM的训练样本,从而提高训练速度和预测精度,克服LSSVM的上述缺点.最后,将该模型运用到短期电力负荷预测中,与经典的SVM和BP神经网络相比具有更好的泛化性能和预测精度.  相似文献   

5.
为解决铣刀磨损状态监测问题,提出一种改进的鲸鱼算法优化最小二乘支持向量机的状态识别方法.首先,采用变分模态分解处理铣削过程中的振动信号,分解得到的固有模态分量进行特征提取;然后,针对鲸鱼算法易陷入局部最优解、收敛精度低的问题,引入混合反向学习算法和非线性收敛因子进行改进,并采用基准测试函数验证改进后的鲸鱼算法的有效性;最后,将改进的鲸鱼算法优化LSSVM模型应用于铣刀磨损状态识别仿真实验.实验结果表明,相较于粒子群算法与传统鲸鱼算法,改进的鲸鱼算法优化LSSVM具有更高的识别精度.  相似文献   

6.
为提高锂电池荷电状态(SOC)的估算精度,提出一种改进粒子群优化(PSO)算法;对最小二乘支持向量机(LSSVM)的惩罚参数C和核函数参数σ进行寻优,建立基于改进PSO-LSSVM的锂电池SOC估算模型.对磷酸铁锂充放电实验数据进行仿真分析,结果表明:改进PSO-LSSVM模型的平均相对误差为2.96%,均方根误差为0.018,全局最大相对误差为4.79%;改进PSO-LSSVM模型明显提高锂电池SOC估算精度.  相似文献   

7.
为有效地解决现有综合管廊投资估算方法的预测精度不高,且预测精度易受样本量大小、特征参数冗余或贫缺等问题,构建一种将主成分分析法(PCA)与粒子群算法(PSO)优化最小二乘支持向量机(LSSVM)结合的综合管廊投资估算预测模型.采用PCA对影响综合管廊投资估算的特征参数进行降维,剔除噪声或冗余数据,以贡献率较大的主成分作为LSSVM的输入向量,综合管廊单公里造价作为LSSVM的输出向量;利用PSO对LSSVM的核函数参数σ与惩罚因子参数C进行寻优,建立基于PCA PSO LSSVM的综合管廊投资估算预测模型,并对测试集样本进行预测.预测结果显示:PCA PSO LSSVM模型平均相对误差为3.28%,满足投资决策阶段对投资估算预测误差的要求(±10%),且与PCA LSSVM模型、PSO LSSVM模型、GA BP模型和GA SVM模型相比,预测精度分别提高了67.29%,70.52%,48.13%和38.60%.PCA PSO LSSVM模型预测精度高,泛化性能优,可作为综合管廊投资估算的有效预测方法.  相似文献   

8.
传统最小二乘支持向量机(LSSVM)一般通过随机选择部分样本得到核矩阵的低秩近似提高解的稀疏性, 为了使该近似分解用尽可能小的低秩矩阵更好地近似原核矩阵, 提出一种]基于正交三角(QR)分解的QRP-LSSVM稀疏算法. 采用QR分解保持正交的特性挑选差异更大的样本, 迭代地精选核矩阵的部分列得到核矩阵的Nystr-m型低秩近似, 并利用分解结果快速求得最小二乘支持向量机的稀疏解. 实验分析表明, 该算法在不牺牲分类性能的前提下可得到更稀疏的解, 甚至在稀疏水平不超过0.05%的情况下准确率也较高, 可有效解决大规模训练问题.  相似文献   

9.
针对暖通空调HVAC系统中由于存在高度非线性、时变特征以及扰动和不确定性等因素而难以控制的特点,提出基于Takagi-Sugeno(T-S)模糊模型的预测函数控制器设计方法。该方法通过最小二乘辨识算法建立系统的模糊T-S模型,然后基于模糊全局线性化预测模型,采用预测函数控制算法设计系统控制律。仿真实验结果表明该算法是一种跟踪性能好、鲁棒性强的有效控制方法。与常规的PID控制器相比,该方法具有超调量小、调整时间短等优良的动态性能。  相似文献   

10.
采用黑洞(BH)算法对最小二乘支持向量机(LSSVM)的惩罚系数C及径向基核函数参数σ进行搜索优化,提高LSSVM的预测性能.黑洞算法模拟自然界黑洞,吸引一定范围内的星体向其运行并吸收它们;算法在运行过程中,始终保持黑洞为最优解,通过星体的运行搜索整个空间.通过基于黑洞算法的LSSVM和基于粒子群(PSO)算法的LSSVM实现对二维函数的预测,并对二者进行了仿真研究.仿真结果证实,黑洞算法可以更好地实现LSSVM参数的优化搜索,且基于黑洞算法的LSSVM方法具有更高的预测精度.  相似文献   

11.
磨矿车间工业现场在保证控制效果的同时,一般要求控制变量具有较小的变化率。提出一种基于高斯搜索的改进粒子群优化算法,该算法以高斯分布来初始化粒子群,并改进粒子速度更新公式,将所提算法融合到最小二乘支持向量机预测控制中。针对选矿厂磨矿过程,给出了基于最小二乘支持向量机的预测控制系统,以及基于高斯搜索的改进粒子群优化算法步骤。对实际磨矿过程进行仿真实验,结果表明该算法在保证控制效果的同时,能大幅度减小控制量的变化率,具有良好的性能指标和应用前景。  相似文献   

12.
针对时变工业过程建模中存在的模型泛化性和适应性较低的问题,利用移动窗技术,通过使用多个核函数,提出了一种基于移动窗的多核最小二乘支持向量机(LSSVM)建模算法.该算法在最小二乘支持向量机算法基础上,利用多核组合代替单核,增强了模型的泛化能力;利用移动窗技术,增加了模型对时变工业过程的动态辨识能力及模型的更新效率.仿真实验结果表明,该算法具有更好的泛化性能.  相似文献   

13.
为了减少在线最小二乘支持向量机(LSSVM)的计算量和存储空间,提出了一种在线稀疏LSSVM.这种LSSVM利用滑动时间窗中部分时刻的样本作为训练样本集.新时刻的样本总是加入训练样本集;每次删除样本时,若滑动时间窗最前端时刻的样本在训练样本集中,则删除它,否则从训练样本集中选择留一法预测误差最小的样本删除.与现有的在线LSSVM相比,这种在线稀疏LSSVM能用较少的样本学习系统较多的特性,能提高时空效率;与现有的在线稀疏LSSVM相比,它能摆脱陈旧样本的影响,更加适应系统的时变性.系统建模仿真实验表明,该在线稀疏LSSVM能节省时间和空间,具有较高的预测精度.  相似文献   

14.
基于Cholesky分解的LSSVM在线学习算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对最小二乘支持向量机(LSSVM)用于在线建模时存在的计算复杂性问题,提出一种LSSVM在线学习算法.首先引入了基于Cholesky分解求LSSVM的方法,接着根据在线建模期间核函数矩阵的更新特点,将分块矩阵Cholesky分解用于LSSVM的在线求解,使三角因子矩阵在线更新从而得出一种新的LSSVM在线学习算法.该算法能充分利用历史训练结果,减少计算量.仿真实验显示了这种在线学习算法的有效性.  相似文献   

15.
基于PSO优化LS-SVM的GPRS工业控制网络时延预测   总被引:1,自引:0,他引:1  
针对GPRS工业控制网络,采用Socket通信方式搭建了测试平台,在此平台上使用TCP和UDP两种协议对GPRS网络实际时延进行了测试和分析,给出了现场应用中的指导意见.基于时间序列分析,采用粒子群优化的最小二乘支持向量机的方法对GPRS工业控制网络时延进行了预测.仿真结果表明,该方法能较好地预测GPRS网络的时延,为之后的网络预测控制提供了良好的基础.  相似文献   

16.
基于改进的GA-LSSVM的软测量建模方法   总被引:1,自引:0,他引:1  
针对工业过程中某些重要过程变量难以实现在线测量的问题,提出了一种改进的最小二乘支持向量机(IGA-LSSVM)的软测量建模方法.该方法采用核独立分量分析(KICA)对高维数据进行特征提取,利用改进的最小二乘支持向量机进行建模.该方法既利用了最小二乘支持向量机求解速度快的特点,又利用了自适应遗传算法强大的全局搜索能力,增强了模型的自适应性.用该方法建立柴油凝点的软测量模型,结果表明,基于IGA-LSSVM方法建立的软测量模型具有较高的预测精度和泛化能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号