首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于DES的车辆横风气动性能模拟   总被引:1,自引:0,他引:1  
采用分离涡模拟(DES)方法,就横风对车辆侧向气动性能的影响进行数值计算。结果表明:随着风向角的增大,车辆的气动力系数均单调增大,当风向角为90°时达到最大值;在小风向角的情况下,头车的气动力系数最大,尾车最小。对静止车辆来说,车体前端和尾端的流场结构具有较强的对称性,在车辆的头、尾部均会产生脱落涡,且向列车的中部发展,与从风挡处气流分离产生的脱落涡干涉、融合,形成复杂的湍流结构,而中间车则受头、尾车的影响较小,在背风侧产生规则的脱落涡;同时尾涡内流速较低。对运动车辆来说,气流会在头车前端背风侧的上、下部产生2个脱落涡,并沿着车长方向发展,上部的脱落涡和从风挡处产生的脱落涡融合叠加,而下部的脱落涡则不受风挡的影响,同时漩涡内速度较高。  相似文献   

2.
 针对汽车行驶中受侧风的影响问题,通过数值模拟研究了侧风作用下汽车的气动特性。利用三维软件UG 设定某实车模型参数,基于计算流体力学方法对实车模型进行数值模拟,研究侧风作用下车身外流场变化以及不同前车窗倾角对汽车气动特性的影响。结果表明,侧风中汽车外流场不对称,导致空气侧向力系数急剧增加达到0.927,空气阻力系数增加38.5%达到0.392,空气升力系数增加15.6%达到0.281;随着前车窗倾角的增大,车身底部气流在车尾的分离推迟,尾涡数量减少,车身表面正负压区域缩小,空气侧向力及空气升力系数变小,在前车窗倾角为35°时,汽车在侧风中的气动特性最优。  相似文献   

3.
采用分离涡方法模拟恒定风场中高速列车绕流的非定常流动,在时域和频域内分析车辆气动特性的瞬态性质。结果表明:在恒定来流中,列车的背风侧和尾车的尾迹区存在着强度不同、空间几何尺度各异并随时间随机变化和脉动的分离涡;各节车辆的非定常气动荷载的时均值与按整场定常流动计算得到的结果基本一致,但瞬态荷载峰值却比时均值高出较多;振幅频谱和功率谱密度的最大峰值所对应的频率不尽相同,但都集中在0~4 Hz内,处于某些列车部件的固有频率范围内。头车的横向力和倾覆力矩的分布频率范围较大,与车体自身频率耦合的范围较宽,横风气动安全性较差。  相似文献   

4.
单线路堤上挡风墙高度研究   总被引:5,自引:0,他引:5  
采用数值模拟计算的方法,对单线路堤上不同高度单、双侧挡风墙对列车气动性能的影响进行研究。研究结果表明:安装挡风墙后,车辆的气动力系数远远小于无挡风墙时的气动力系数,车辆的迎风面受到的压力由大部分正压转变为大部分负压,车辆顶部受到的负压明显减小;挡风墙的不同高度对车辆的气动性能有明显影响,挡风墙高度较低时,横向力系数为正值,随挡风墙高度的增加而减小,达到一定高度后,由正值变为负值,而倾覆力矩系数则正好相反;对于单侧挡风墙,在挡风墙高度为1.85 m时,车体的倾覆力矩系数为0,其合理高度应为1.85 m;对于双侧挡风墙,当挡风墙高度为2.00 m时,倾覆力矩系数为0,因此,挡风墙合理高度为2.00 m。  相似文献   

5.
长大编组高速列车横风气动特性研究   总被引:2,自引:0,他引:2  
采用定常RANS方法, 对长大编组高速列车的横风气动特性进行分析, 从流场特性和气动力特性两个方面开展研究。结果表明, 横风条件下, 列车表面流动现象非常丰富, 列车首尾流线型存在较多流动分离、再附等现象, 且受横风侧偏角影响较大。在列车背风侧出现两个以上的复杂分离涡系, 从列车头车下部开始, 向列车下游发展并逐渐远离列车车体。分离涡系是列车承受非定常气动力的根源。列车头车是侧向力、滚转力矩最严峻的车厢, 且随着横风侧偏角增大, 侧向力、滚转力矩逐渐增大, 列车行车环境逐渐恶化。  相似文献   

6.
通过节段模型风洞试验分析宽高比4.3流线型箱梁断面的涡激振动性能,基于数值模拟分析静止及振动断面周围的绕流结构,探讨流线型箱梁涡激振动机制。结果表明:+5°攻角时,宽高比4.3断面涡激振动竖向无量纲最大振幅为0.013 5,是+3°攻角的2.2倍。涡激振动机制为:气流在桥面板处分离后,产生一定尺寸的上部漩涡,随着漩涡沿桥面板运动,其尺寸不断增大,并在桥面板背风侧发生分离脱落,振动断面周围的上部漩涡更加完整,且存在5个尺寸相对较大的漩涡,而下部漩涡在背风侧风嘴下斜腹板处的尺寸与数量有一定程度的增加;振动幅值增大后,主梁尾流宽度增大,脉动强度有一定程度增强。研究结果可供流线型箱梁抗风设计参考。  相似文献   

7.
为了控制地面车辆气动阻力,通过风洞实验和大涡模拟仿真方法,研究定常射流对地面车辆流动控制的影响;研制由17只定常射流器构成的射流阵列装置,将其安装在车辆顶部和斜背交界处,进行流动控制实验;探讨射流倾角和动量系数等射流参数对三维地面车辆的非定常流动和气动力的控制机理。研究结果表明:数值仿真方法可有效模拟气动力变化趋势。动量系数不改变气动力变化趋势,仅影响变化幅值。射流倾角决定射流出口附近的速度分布,影响气流分离,导致气动力的差异。与无控制下相比,当射流倾角为-25°~65°时,可实现减阻;而当射流倾角为80°~115°时,对应的阻力未减小。  相似文献   

8.
针对Ahmed类车体,在车身斜面选定位置处设置控制槽,采用证明为有效的大涡模拟数值方法,研究喷/吸流动主动控制方法的气动减阻机理及效果.基于流场数据分析发现喷射控制致使车体斜面上流动大分离发生,拖曳涡对得以消除,但尾迹区尺度增大,气动阻力上升;抽吸控制方法抑制和消除展向涡结构的产生及发展,但拖曳涡对未受显著影响,气动阻力下降.  相似文献   

9.
透平动叶顶部间隙流的端壁二次流结构研究   总被引:8,自引:0,他引:8  
对不同动叶顶部间隙的Aachen一级半轴流透平内部流动进行了数值模拟,以二次速度矢量和周向平均气流角的分布为依据,分析了间隙流、间隙涡与动叶顶部通道涡掺混的方式及其对二次流结构的影响.结果表明:较大的间隙尺寸导致间隙涡较早产生;间隙涡在向下游发展的过程中强度减弱,但范围有所增加;较小的间隙或者在接近叶栅前缘区域,间隙流仅将通道涡整体推移,不破坏通道涡的完整性;间隙较大或在叶栅的高加载区域,间隙流将通道涡拆分成2个独立的涡区,并将这2个涡区分别向压力面和中叶展推移,而间隙涡本身则占据动叶顶部较大的区域.最后,给出了不同间隙下2种不同的端壁二次流结构.  相似文献   

10.
为了得到底部结构对列车流场及气动阻力优化规律的影响,通过计算流体力学和正交试验设计分析的方法,研究真实复杂车体的底部流动和尾迹特征,得到了复杂车体气动阻力优化规律.结果表明,尾车鼻尖静压系数在底部结构影响下降低了0.06,尾车流动分离提前,两反对称尾涡核间横向距离增大,尾涡间夹角增大.头型概念设计时的拓扑简化车体模型可以作为真实复杂车体的气动阻力优化设计模型,但考虑底部结构使得头车参数优化的极差值减小、尾车参数的优化极差值增大.头车阻力优化重点为转向架周边结构,尾车阻力优化对流线型长度参数更加敏感.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号