共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis 总被引:52,自引:0,他引:52
Kaplan JM Kim SH North KN Rennke H Correia LA Tong HQ Mathis BJ Rodríguez-Pérez JC Allen PG Beggs AH Pollak MR 《Nature genetics》2000,24(3):251-256
Focal and segmental glomerulosclerosis (FSGS) is a common, non-specific renal lesion. Although it is often secondary to other disorders, including HIV infection, obesity, hypertension and diabetes, FSGS also appears as an isolated, idiopathic condition. FSGS is characterized by increased urinary protein excretion and decreasing kidney function. Often, renal insufficiency in affected patients progresses to end-stage renal failure, a highly morbid state requiring either dialysis therapy or kidney transplantation. Here we present evidence implicating mutations in the gene encoding alpha-actinin-4 (ACTN4; ref. 2), an actin-filament crosslinking protein, as the cause of disease in three families with an autosomal dominant form of FSGS. In vitro, mutant alpha-actinin-4 binds filamentous actin (F-actin) more strongly than does wild-type alpha-actinin-4. Regulation of the actin cytoskeleton of glomerular podocytes may be altered in this group of patients. Our results have implications for understanding the role of the cytoskeleton in the pathophysiology of kidney disease and may lead to a better understanding of the genetic basis of susceptibility to kidney damage. 相似文献
2.
Meimaridou E Kowalczyk J Guasti L Hughes CR Wagner F Frommolt P Nürnberg P Mann NP Banerjee R Saka HN Chapple JP King PJ Clark AJ Metherell LA 《Nature genetics》2012,44(7):740-742
Using targeted exome sequencing, we identified mutations in NNT, an antioxidant defense gene, in individuals with familial glucocorticoid deficiency. In mice with Nnt loss, higher levels of adrenocortical cell apoptosis and impaired glucocorticoid production were observed. NNT knockdown in a human adrenocortical cell line resulted in impaired redox potential and increased reactive oxygen species (ROS) levels. Our results suggest that NNT may have a role in ROS detoxification in human adrenal glands. 相似文献
3.
Topaz O Shurman DL Bergman R Indelman M Ratajczak P Mizrachi M Khamaysi Z Behar D Petronius D Friedman V Zelikovic I Raimer S Metzker A Richard G Sprecher E 《Nature genetics》2004,36(6):579-581
Familial tumoral calcinosis (FTC; OMIM 211900) is a severe autosomal recessive metabolic disorder that manifests with hyperphosphatemia and massive calcium deposits in the skin and subcutaneous tissues. Using linkage analysis, we mapped the gene underlying FTC to 2q24-q31. This region includes the gene GALNT3, which encodes a glycosyltransferase responsible for initiating mucin-type O-glycosylation. Sequence analysis of GALNT3 identified biallelic deleterious mutations in all individuals with FTC, suggesting that defective post-translational modification underlies the disease. 相似文献
4.
Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2 总被引:10,自引:0,他引:10
Metherell LA Chapple JP Cooray S David A Becker C Rüschendorf F Naville D Begeot M Khoo B Nürnberg P Huebner A Cheetham ME Clark AJ 《Nature genetics》2005,37(2):166-170
Familial glucocorticoid deficiency (FGD), or hereditary unresponsiveness to adrenocorticotropin (ACTH; OMIM 202200), is an autosomal recessive disorder resulting from resistance to the action of ACTH on the adrenal cortex, which stimulates glucocorticoid production. Affected individuals are deficient in cortisol and, if untreated, are likely to succumb to hypoglycemia or overwhelming infection in infancy or childhood. Mutations of the ACTH receptor (melanocortin 2 receptor, MC2R) account for approximately 25% of cases of FGD. FGD without mutations of MC2R is called FGD type 2. Using SNP array genotyping, we mapped a locus involved in FGD type 2 to chromosome 21q22.1. We identified mutations in a gene encoding a 19-kDa single-transmembrane domain protein, now known as melanocortin 2 receptor accessory protein (MRAP). We show that MRAP interacts with MC2R and may have a role in the trafficking of MC2R from the endoplasmic reticulum to the cell surface. 相似文献
5.
Pellegata NS Dieguez-Lucena JL Joensuu T Lau S Montgomery KT Krahe R Kivelä T Kucherlapati R Forsius H de la Chapelle A 《Nature genetics》2000,25(1):91-95
Specialized collagens and small leucine-rich proteoglycans (SLRPs) interact to produce the transparent corneal structure. In cornea plana, the forward convex curvature is flattened, leading to a decrease in refraction. A more severe, recessively inherited form (CNA2; MIM 217300) and a milder, dominantly inherited form (CNA1; MIM 121400) exist. CNA2 is a rare disorder with a worldwide distribution, but a high prevalence in the Finnish population. The gene mutated in CNA2 was assigned by linkage analysis to 12q (refs 4, 5), where there is a cluster of several SLRP genes. We cloned two additional SLRP genes highly expressed in cornea: KERA (encoding keratocan) in 12q and OGN (encoding osteoglycin) in 9q. Here we report mutations in KERA in 47 CNA2 patients: 46 Finnish patients are homozygous for a founder missense mutation, leading to the substitution of a highly conserved amino acid; and one American patient is homozygous for a mutation leading to a premature stop codon that truncates the KERA protein. Our data establish that mutations in KERA cause CNA2. CNA1 patients had no mutations in these proteoglycan genes. 相似文献
6.
Brachydactyly type A-1 (BDA-1; MIM 112500) is characterized by shortening or missing of the middle phalanges (Fig. 1a). It was first identified by Farabee in 1903 (ref. 2), is the first recorded example of a human anomaly with Mendelian autosomal-dominant inheritance and, as such, is cited in most genetic and biological textbooks. Here we show that mutations in IHH, which encodes Indian hedgehog, cause BDA-1. We have identified three heterozygous missense mutations in the region encoding the amino-terminal signaling domain in all affected members of three large, unrelated families. The three mutant amino acids, which are conserved across all vertebrates and invertebrates studied so far, are predicted to be adjacent on the surface of IHH. 相似文献
7.
Mutations in the gene encoding epsilon-sarcoglycan cause myoclonus-dystonia syndrome 总被引:10,自引:0,他引:10
Zimprich A Grabowski M Asmus F Naumann M Berg D Bertram M Scheidtmann K Kern P Winkelmann J Müller-Myhsok B Riedel L Bauer M Müller T Castro M Meitinger T Strom TM Gasser T 《Nature genetics》2001,29(1):66-69
The dystonias are a common clinically and genetically heterogeneous group of movement disorders. More than ten loci for inherited forms of dystonia have been mapped, but only three mutated genes have been identified so far. These are DYT1, encoding torsin A and mutant in the early-onset generalized form, GCH1 (formerly known as DYT5), encoding GTP-cyclohydrolase I and mutant in dominant dopa-responsive dystonia, and TH, encoding tyrosine hydroxylase and mutant in the recessive form of the disease. Myoclonus-dystonia syndrome (MDS; DYT11) is an autosomal dominant disorder characterized by bilateral, alcohol-sensitive myoclonic jerks involving mainly the arms and axial muscles. Dystonia, usually torticollis and/or writer's cramp, occurs in most but not all affected patients and may occasionally be the only symptom of the disease. In addition, patients often show prominent psychiatric abnormalities, including panic attacks and obsessive-compulsive behavior. In most MDS families, the disease is linked to a locus on chromosome 7q21 (refs. 11-13). Using a positional cloning approach, we have identified five different heterozygous loss-of-function mutations in the gene for epsilon-sarcoglycan (SGCE), which we mapped to a refined critical region of about 3.2 Mb. SGCE is expressed in all brain regions examined. Pedigree analysis shows a marked difference in penetrance depending on the parental origin of the disease allele. This is indicative of a maternal imprinting mechanism, which has been demonstrated in the mouse epsilon-sarcoglycan gene. 相似文献
8.
Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. 总被引:23,自引:0,他引:23
M Tartaglia E L Mehler R Goldberg G Zampino H G Brunner H Kremer I van der Burgt A H Crosby A Ion S Jeffery K Kalidas M A Patton R S Kucherlapati B D Gelb 《Nature genetics》2001,29(4):465-468
Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity. 相似文献
9.
S M Houten W Kuis M Duran T J de Koning A van Royen-Kerkhof G J Romeijn J Frenkel L Dorland M M de Barse W A Huijbers G T Rijkers H R Waterham R J Wanders B T Poll-The 《Nature genetics》1999,22(2):175-177
Hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS; MIM 260920) is an autosomal recessive disorder characterized by recurrent episodes of fever associated with lymphadenopathy, arthralgia, gastrointestinal dismay and skin rash. Diagnostic hallmark of HIDS is a constitutively elevated level of serum immunoglobulin D (IgD), although patients have been reported with normal IgD levels. To determine the underlying defect in HIDS, we analysed urine of several patients and discovered increased concentrations of mevalonic acid during severe episodes of fever, but not between crises. Subsequent analysis of cells from four unrelated HIDS patients revealed reduced activities of mevalonate kinase (MK; encoded by the gene MVK), a key enzyme of isoprenoid biosynthesis. Sequence analysis of MVK cDNA from the patients identified three different mutations, one of which was common to all patients. Expression of the mutant cDNAs in Escherichia coli showed that all three mutations affect the activity of the encoded proteins. Moreover, immunoblot analysis demonstrated a deficiency of MK protein in patient fibroblasts, indicating a protein-destabilizing effect of the mutations. 相似文献
10.
den Hollander AI Koenekoop RK Mohamed MD Arts HH Boldt K Towns KV Sedmak T Beer M Nagel-Wolfrum K McKibbin M Dharmaraj S Lopez I Ivings L Williams GA Springell K Woods CG Jafri H Rashid Y Strom TM van der Zwaag B Gosens I Kersten FF van Wijk E Veltman JA Zonneveld MN van Beersum SE Maumenee IH Wolfrum U Cheetham ME Ueffing M Cremers FP Inglehearn CF Roepman R 《Nature genetics》2007,39(7):889-895
11.
Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome 总被引:23,自引:0,他引:23
Chavanas S Bodemer C Rochat A Hamel-Teillac D Ali M Irvine AD Bonafé JL Wilkinson J Taïeb A Barrandon Y Harper JI de Prost Y Hovnanian A 《Nature genetics》2000,25(2):141-142
We describe here eleven different mutations in SPINK5, encoding the serine protease inhibitor LEKTI, in 13 families with Netherton syndrome (NS, MIM256500). Most of these mutations predict premature termination codons. These results disclose a critical role of SPINK5 in epidermal barrier function and immunity, and suggest a new pathway for high serum IgE levels and atopic manifestations. 相似文献
12.
Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis 总被引:16,自引:0,他引:16
Hughes AE Ralston SH Marken J Bell C MacPherson H Wallace RG van Hul W Whyte MP Nakatsuka K Hovy L Anderson DM 《Nature genetics》2000,24(1):45-48
Familial expansile osteolysis (FEO, MIM 174810) is a rare, autosomal dominant bone disorder characterized by focal areas of increased bone remodelling. The osteolytic lesions, which develop usually in the long bones during early adulthood, show increased osteoblast and osteoclast activity. Our previous linkage studies mapped the gene responsible for FEO to an interval of less than 5 cM between D18S64 and D18S51 on chromosome 18q21.2-21.3 in a large Northern Irish family. The gene encoding receptor activator of nuclear factor-kappa B (RANK; ref. 5), TNFRSF11A, maps to this region. RANK is essential in osteoclast formation. We identified two heterozygous insertion mutations in exon 1 of TNFRSF11A in affected members of four families with FEO or familial Paget disease of bone (PDB). One was a duplication of 18 bases and the other a duplication of 27 bases, both of which affected the signal peptide region of the RANK molecule. Expression of recombinant forms of the mutant RANK proteins revealed perturbations in expression levels and lack of normal cleavage of the signal peptide. Both mutations caused an increase in RANK-mediated nuclear factor-kappaB (NF-kappaB) signalling in vitro, consistent with the presence of an activating mutation. 相似文献
13.
Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. 总被引:13,自引:0,他引:13
R C Betz B G Schoser D Kasper K Ricker A Ramírez V Stein T Torbergsen Y A Lee M M N?then T F Wienker J P Malin P Propping A Reis W Mortier T J Jentsch M Vorgerd C Kubisch 《Nature genetics》2001,28(3):218-219
Hereditary rippling muscle disease (RMD) is an autosomal dominant human disorder characterized by mechanically triggered contractions of skeletal muscle. Genome-wide linkage analysis has identified an RMD locus on chromosome 3p25. We found missense mutations in positional candidate CAV3 (encoding caveolin 3; ref. 5) in all five families analyzed. Mutations in CAV3 have also been described in limb-girdle muscular dystrophy type 1C (LGMD1C; refs. 6,7), demonstrating the allelism of dystrophic and non-dystrophic muscle diseases. 相似文献
14.
Anderson BH Kasher PR Mayer J Szynkiewicz M Jenkinson EM Bhaskar SS Urquhart JE Daly SB Dickerson JE O'Sullivan J Leibundgut EO Muter J Abdel-Salem GM Babul-Hirji R Baxter P Berger A Bonafé L Brunstom-Hernandez JE Buckard JA Chitayat D Chong WK Cordelli DM Ferreira P Fluss J Forrest EH Franzoni E Garone C Hammans SR Houge G Hughes I Jacquemont S Jeannet PY Jefferson RJ Kumar R Kutschke G Lundberg S Lourenço CM Mehta R Naidu S Nischal KK Nunes L Ounap K Philippart M Prabhakar P Risen SR 《Nature genetics》2012,44(3):338-342
Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity. 相似文献
15.
Hu Z Bonifas JM Beech J Bench G Shigihara T Ogawa H Ikeda S Mauro T Epstein EH 《Nature genetics》2000,24(1):61-65
Hailey-Hailey disease (HHD, MIM 16960) is inherited in an autosomal dominant manner and characterized by persistent blisters and erosions of the skin. Impaired intercellular adhesion and epidermal blistering also occur in individuals with pemphigus (which is due to autoantibodies directed against desmosomal proteins) and in patients with Darier disease (DD, MIM 124200), which is caused by mutations in a gene encoding a sarco/endoplasmic reticulum (ER)-Golgi calcium pump. We report here the identification of mutations in ATP2C1, encoding the human homologue of an ATP-powered pump that sequesters calcium into the Golgi in yeast, in 21 HHD kindreds. Regulation of cytoplasmic calcium is impaired in cultured keratinocytes from HHD patients, and the normal epidermal calcium gradient is attenuated in vivo in HHD patients. Our findings not only provide an understanding of the molecular basis of HHD, but also underscore the importance of calcium control to the functioning of stratified squamous epithelia. 相似文献
16.
Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness 总被引:12,自引:0,他引:12
Bech-Hansen NT Naylor MJ Maybaum TA Sparkes RL Koop B Birch DG Bergen AA Prinsen CF Polomeno RC Gal A Drack AV Musarella MA Jacobson SG Young RS Weleber RG 《Nature genetics》2000,26(3):319-323
During development, visual photoreceptors, bipolar cells and other neurons establish connections within the retina enabling the eye to process visual images over approximately 7 log units of illumination. Within the retina, cells that respond to light increment and light decrement are separated into ON- and OFF-pathways. Hereditary diseases are known to disturb these retinal pathways, causing either progressive degeneration or stationary deficits. Congenital stationary night blindness (CSNB) is a group of stable retinal disorders that are characterized by abnormal night vision. Genetic subtypes of CSNB have been defined and different disease actions have been postulated. The molecular bases have been elucidated in several subtypes, providing a better understanding of the disease mechanisms and developmental retinal neurobiology. Here we have studied 22 families with 'complete' X-linked CSNB (CSNB1; MIM 310500; ref. 4) in which affected males have night blindness, some photopic vision loss and a defect of the ON-pathway. We have found 14 different mutations, including 1 founder mutation in 7 families from the United States, in a novel candidate gene, NYX. NYX, which encodes a glycosylphosphatidyl (GPI)-anchored protein called nyctalopin, is a new and unique member of the small leucine-rich proteoglycan (SLRP) family. The role of other SLRP proteins suggests that mutant nyctalopin disrupts developing retinal interconnections involving the ON-bipolar cells, leading to the visual losses seen in patients with complete CSNB. 相似文献
17.
Janssens K Gershoni-Baruch R Guañabens N Migone N Ralston S Bonduelle M Lissens W Van Maldergem L Vanhoenacker F Verbruggen L Van Hul W 《Nature genetics》2000,26(3):273-275
Camurati-Engelmann disease (CED; MIM 131300), or progressive diaphyseal dysplasia, is a rare, sclerosing bone dysplasia inherited in an autosomal dominant manner. Recently, the gene causing CED has been assigned to the chromosomal region 19q13 (refs 1-3). Because this region contains the gene encoding transforming growth factor-beta 1 (TGFB1), an important mediator of bone remodelling, we evaluated TGFB1 as a candidate gene for causing CED. 相似文献
18.
Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy 总被引:12,自引:0,他引:12
Ferdinandusse S Denis S Clayton PT Graham A Rees JE Allen JT McLean BN Brown AY Vreken P Waterham HR Wanders RJ 《Nature genetics》2000,24(2):188-191
Sensory motor neuropathy is associated with various inherited disorders including Charcot-Marie-Tooth disease, X-linked adrenoleukodystrophy/adrenomyeloneuropathy and Refsum disease. In the latter two, the neuropathy is thought to result from the accumulation of specific fatty acids. We describe here three patients with elevated plasma concentrations of pristanic acid (a branched-chain fatty acid) and C27-bile-acid intermediates. Two of the patients suffered from adult-onset sensory motor neuropathy. One patient also had pigmentary retinopathy, suggesting Refsum disease, whereas the other patient had upper motor neuron signs in the legs, suggesting adrenomyeloneuropathy. The third patient was a child without neuropathy. In all three patients we discovered a deficiency of alpha-methylacyl-CoA racemase (AMACR). This enzyme is responsible for the conversion of pristanoyl-CoA and C27-bile acyl-CoAs to their (S)-stereoisomers, which are the only stereoisomers that can be degraded via peroxisomal beta-oxidation. Sequence analysis of AMACR cDNA from the patients identified two different mutations that are likely to cause disease, based on analysis in Escherichia coli. Our findings have implications for the diagnosis of adult-onset neuropathies of unknown aetiology. 相似文献
19.
20.
Kleta R Romeo E Ristic Z Ohura T Stuart C Arcos-Burgos M Dave MH Wagner CA Camargo SR Inoue S Matsuura N Helip-Wooley A Bockenhauer D Warth R Bernardini I Visser G Eggermann T Lee P Chairoungdua A Jutabha P Babu E Nilwarangkoon S Anzai N Kanai Y Verrey F Gahl WA Koizumi A 《Nature genetics》2004,36(9):999-1002
Hartnup disorder, an autosomal recessive defect named after an English family described in 1956 (ref. 1), results from impaired transport of neutral amino acids across epithelial cells in renal proximal tubules and intestinal mucosa. Symptoms include transient manifestations of pellagra (rashes), cerebellar ataxia and psychosis. Using homozygosity mapping in the original family in whom Hartnup disorder was discovered, we confirmed that the critical region for one causative gene was located on chromosome 5p15 (ref. 3). This region is homologous to the area of mouse chromosome 13 that encodes the sodium-dependent amino acid transporter B(0)AT1 (ref. 4). We isolated the human homolog of B(0)AT1, called SLC6A19, and determined its size and molecular organization. We then identified mutations in SLC6A19 in members of the original family in whom Hartnup disorder was discovered and of three Japanese families. The protein product of SLC6A19, the Hartnup transporter, is expressed primarily in intestine and renal proximal tubule and functions as a neutral amino acid transporter. 相似文献