首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 413 毫秒
1.
分析影响电动汽车制动能量回馈的主要因素;以制动能量最大化为目标,建立电液复合制动力分配模型,设计以电液复合制动特性参数蓄电池荷电状态(SOC)、制动强度、车速为输入,回馈制动比例为输出的制动力模糊分配规则。同时,以能量回收率为评价指标对SOC、制动强度及车速进行灵敏度分析。研究结果明:SOC对能量回收率的影响最大,制动强度对能量回收率的影响次之;根据各特性参数对评价指标的影响权重,可改进电液复合制动力分配模糊规则;在相同制动工况下,考虑参数灵敏度的电动汽车电液复合回馈制动模糊控制方法可有效提高制动能量回收率。  相似文献   

2.
混联式混合动力再生制动控制策略   总被引:1,自引:0,他引:1  
 再生制动系统是混合动力汽车和电动汽车特有的系统。该系统可将汽车制动过程中消耗的汽车动能和势能通过电动机发电的方式储存到电池中,在起动和加速过程中加以利用。本研究以长丰CJY6470E越野车为对象,在传统汽车制动理论的基础上,基于制动安全及制动效能,提出一种混联式混合动力汽车制动能量分配与再生制动控制策略。前后轴采用理想制动力分配,在分配好后,再对前后轴的再生和摩擦制动进行二次分配。进行二次分配时,主要考虑电机及电池的使用寿命,以车速及SOC作为电机再生制动功率影响因素,并通过对ADVISOR2002进行二次开发,建立整车模型,最后进行仿真。结果表明,采用所提出的再生制动控制策略可实现高效的制动能量回收,延长电池的使用寿命,且该策略具有可行性。  相似文献   

3.
纯电动汽车电液复合再生制动控制   总被引:1,自引:0,他引:1  
针对纯电动汽车电液复合再生制动过程机电制动力的动态分配问题,通过对制动动力学和ECE R13-H制动法规的分析,从理论上确定纯电动汽车电液复合再生制动的安全运行范围。在安全制动范围内,开发了以最大限度回收能量为目标,达到需求制动强度而前、后轴又不抱死的再生制动控制流程,生成机电制动力分配矩阵。以制动强度分别为0.2,0.3,0.4,0.5和0.6,初始车速为16.67 m/s,结合ECE-EUDC道路循环,构建新的仿真循环,将车辆参数、制动力分配矩阵、道路循环嵌入ADVISOR2002软件。研究结果表明:仿真运行1个道路循环后,电池荷电状态SOC(State of charge)相对原策略有较明显的提高,提高幅度达4.5%,较好地回收了制动能量,更重要的是保证了制动安全,表明开发的控制策略是有效的。  相似文献   

4.
电动汽车再生制动能量回收系统可以提高其续航里程。本文以某前驱型电动汽车为研究对象,分析了其在行驶过程及制动过程中制动力分配情况,综合考虑ECE制动法规、电机峰值转矩及电池充电性能等主要限制性条件,融合驾驶员制动强度判别特性,提出了一种适合本文电动汽车的再生制动力分配控制策略;基于MATLAB/Simulink软件平台进行了建模仿真,并将仿真结果与理想制动力分配策略进行对比。结果表明,该控制策略能够在保证制动效能的同时实现能量回收,能量回收效率达到34.179%,高于理想制动力分配策略。  相似文献   

5.
电动汽车再生制动能量回收系统可以提高其续航里程。以某前驱型电动汽车为研究对象,分析了其在行驶过程及制动过程中制动力分配情况,综合考虑ECE制动法规、电机峰值转矩及电池充电性能等主要限制性条件,融合驾驶员制动强度判别特性,提出了一种适合电动汽车的再生制动力分配控制策略。基于MATLAB/Simulink软件平台进行了建模仿真,并将仿真结果与理想制动力分配策略进行对比。结果表明,该控制策略能够在保证制动效能的同时实现能量回收,能量回收效率达到34.179%,高于理想制动力分配策略。  相似文献   

6.
为了使纯电动汽车在制动时既能保证安全性,又能获取最大的制动能量回馈效率,综合考虑了ECE法规线、I曲线、f线以及M线对制动力分配的规范作用,结合模糊控制算法,提出了一种以车速v、制动强度z以及蓄电池SOC三者为输入、制动能量回馈比例Kr为输出的模糊控制系统。在此基础上建立了再生制动模型,将其嵌入到ADVISOR 2002中,并在CYC_UDDS工况下进行仿真。研究结果表明,新的再生制动策略比ADVISOR 2002原有的控制方案回收率提高了6.36%,显著提高了电动汽车的实际续航里程。  相似文献   

7.
考虑混合动力汽车制动安全性和燃油经济性,提出了一种基于电池SOC值和制动强度的再生制动力控制策略.提出了通过调节CVT的速比及控制电机工作在高效区来提高电机发电效率的再生制动控制方法.进行了整车再生制动系统建模和典型城市驱动循环工况下的仿真,结果表明,提出的CVT速比控制策略能使以CVT为变速器的混合动力汽车比以MT为变速器的混合动力汽车在ECE EUDC驱动循环工况下的再生制动能量回收率提高2.86%.  相似文献   

8.
单轴并联式混合动力城市客车再生制动挡位决策   总被引:2,自引:2,他引:0  
设计一种串并混联式复合制动踏板方案,并针对该方案制订再生制动阶跃式制动力分配曲线.分析了影响再生制动效率的多种因素,提出运用序列二次规划(SQP)算法优化挡位决策和电机输出扭矩以解决再生制动中回收效率与制动力分配曲线和电机转速的矛盾.在Cruise和Matlab/Simulink联合仿真平台下,建立了单轴并联式混合动力传动系统整车模型,基于欧洲公交客车循环工况(UDC)进行了仿真研究.结果表明,电池荷电状态(SOC)比采用传统双参数换挡规律提高了近1.5%.进行了三种典型制动工况下实车试验,取得了与仿真结果相吻合的试验结果,其中正常制动工况下的能量回收率比传统双参数换挡策略提高了近11.00%.  相似文献   

9.
全轮驱动混合动力汽车再生制动系统控制策略   总被引:1,自引:0,他引:1  
在传统汽车制动理论的基础上,基于最大回收制动能量和制动的安全性,提出了一种全轮驱动混合动力汽车制动能量分配与再生制动控制策略.综合考虑电机电池效率等限制因素后,进行整车再生制动系统建模和典型制动工况下的仿真.结果表明,在制动车速为30 km/h,制动强度Z分别为0.1、0.3、0.5下最大能量回收率分别可达87.5%、47.8%、28.6%,采用提出的制动能量分配与再生制动控制策略能满足整车制动力分配的要求,并实现高效的制动能量回收.  相似文献   

10.
在传统汽车制动理论的基础上,基于最大回收制动能量和制动的安全性,提出了一种全轮驱动混合动力汽车制动能量分配与再生制动控制策略。综合考虑电机电池效率等限制因素后,进行整车再生制动系统建模和典型制动工况下的仿真。结果表明,在制动车速为30 km/h,制动强度Z分别为0.1、0.3、0.5下最大能量回收率分别可达87.5%、47.8%、28.6%,采用提出的制动能量分配与再生制动控制策略能满足整车制动力分配的要求,并实现高效的制动能量回收。  相似文献   

11.
电动汽车可以通过再生制动提高动力电池的能量利用效率并延长续航里程;而电动汽车的再生制动效率依赖于其制动力的分配策略。在不同制动强度下,电动汽车再生制动过程制动力的分配比例应该不同,需要根据驾驶员踩踏制动踏板的位移进行制动意图和制动强度的识别。基于制动踏板位移对应的电压和电压变化率,设计了个模糊逻辑控制器,分别进行驾驶员制动意图和制动强度的识别。将驾驶员的制动意图分为缓慢制动、中等制动和紧急制动三种状态;并对三种状态下的制动强度变化进行准确的识别。搭建了由制动踏板、dSPACE半实物仿真平台和Control Desk调试界面组成的测试系统。对设计的模糊逻辑控制器进行了实验测试。测试结果显示,制动踏板位移对应的电压和电压变化率可以反映驾驶员的制动意图和制动强度,通过设计的模糊逻辑控制器可以识别出驾驶员的制动意图和对应的制动强度变化。因此,本系统可以用于电动汽车再生制动过程中进行制动强度的识别和基于制动强度的制动力分配,提高电动汽车的能量利用效率。  相似文献   

12.
针对前轮驱动的电动汽车提出了一种基于模糊逻辑的制动力分配及能量回收控制策略。同时考虑了制动踏板行程、车速(电机转速)、电池荷电状态等对电动汽车制动力分配的影响,使动力分配更加合理,从而有效地回收制动能量,提高能量利用率。仿真结果表明了该控制策略的有效性和优越性。  相似文献   

13.
汽车再生制动系统机电制动力分配   总被引:5,自引:0,他引:5  
对汽车制动能量再生系统的机电制动力分配控制方法进行了研究,以电机制动效能为依据划分制动模式,提出了常规液压制动与再生制动力(电机制动)协调控制方法,建立了相应的再生制动系统机电制动力分配控制策略模型,并且对控制模型进行了仿真分析.结果表明,该再生制动系统机电制动力分配控制策略能够保证汽车前后轴制动力分配随理想制动力分配I曲线变化,实现良好制动性能,制动过程中增加了电机制动率,从而提高了汽车制动能量的回收率.  相似文献   

14.
针对采用增加蓄电池容量解决电动汽车续驶距离短困难的现状,提出采用再生制动的方法实现机械能向电能的高效转化.建立了制动系统的数学模型,阐述了再生制动能量回收系统的控制策略,设计了制动能量回收控制器,并利用Proteus软件进行了仿真.仿真结果表明该模型可以简便、有效地实现电动汽车的电气回馈制动,提高电动汽车的能量利用率.  相似文献   

15.
电动汽车再生制动控制策略研究   总被引:4,自引:0,他引:4  
制定合理的再生制动控制策略,使其在保证制动稳定性的基础上,最大限度回收制动能量. 通过对汽车制动动力学和相关法规的分析,结合电机的输出特性,建立了电机模型,提出了一种前后轮制动力分配的控制策略,并在Advisor软件上进行了仿真分析. 与常用的比例制动控制策略相比,该控制策略能充分利用电机的制动转矩,大幅提高制动能量的回收;同时也很好地满足了制动稳定性要求.  相似文献   

16.
再生制动是混合动力汽车区别于传统汽车的技术特点,是提高车辆燃油经济性的重要措施之一.以一种轴间力矩耦合的插电式并联混合动力汽车为研究对象,从再生制动分配算法的影响因素入手,提出了一种带有模糊控制的混合动力汽车再生制动能量管理策略.所设计的控制策略主要针对两个层面的控制决策,顶层是轴间制动力矩的分配决策,底层是再生制动电机所在的后轴力矩在摩擦制动与再生制动之间的分配决策.采用多种典型车辆行驶工况对所提出的模糊控制策略进行仿真研究.结果表明,所提出的模糊控制策略能够明显改善车辆的能量回收效果,与传统理想制动力分配曲线控制策略相比,能量回收最多可提高23.44%.  相似文献   

17.
一种改进的再生制动控制策略优化   总被引:1,自引:0,他引:1  
为了充分利用混合动力汽车的再生制动能量,提高整车燃油经济性,通过分析混合动力汽车再生制动系统的工作原理,依据理想的前后轮制动力分配曲线,基于比例控制策略,提出了一种并行制动力的分配策略,以对摩擦制动力和再生制动力进行合理分配.进而以平均再生制动力为目标,选取制动控制策略控制曲线上的关键点坐标为控制变量,对并行再生制动控制策略进行了优化设计.选取Saturn SL1为研究车型,在市区15工况下进行了仿真研究.结果表明,优化后的并行控制策略既可以满足制动安全性的要求又可以回收更多的制动能量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号