首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
压力容器是可能引起爆炸等危害性较大事故的特种设备,纤维缠绕复合材料压力容器由于其先漏后爆等特性在石化等领域得到广泛应用,本文基于纤维缠绕工艺特点提出无焊缝连接金属内衬复合材料压力容器结构,通过缠绕工艺解决内衬封头与筒体间连续性问题,发明辅助成型工装实现新型内衬结构缠绕成型问题,新型容器可承受110Mpa爆破设计压力。  相似文献   

2.
具有金属内衬缠绕压力容器成型全过程应力场分析   总被引:2,自引:0,他引:2  
基于具有金属内衬复合材料缠绕容器缠绕、固化和预超压3个制造工艺过程的特点,提出一种温度参数当量法模型和虚实单元分析策略,以模拟在缠绕预张力工艺中的力学行为.根据固化反应动力学理论和热传导理论,对具有金属内衬的复合材料纤维缠绕压力容器在固化工艺过程中瞬态温度、固化度和热应力场分布及其变化规律进行了数值分析.采用经典塑性理论为基础的非线性有限元方法,预测了预超压工艺后容器复合材料缠绕层和金属内衬内残余应力场的分布.以一典型的具有金属内衬复合材料纤维缠绕压力容器为例,讨论了在3个工艺过程中工艺参数对容器内应力场分布的影响.结果表明:适合的工艺参数能够提高压力容器的承载能力.  相似文献   

3.
 随着新能源汽车、火箭发动机系统、卫星等新技术和新装备的不断发展,对其携带液体燃料和高压气体的压力容器提出高气密、轻质量、长寿命的苛刻要求.对此,本文提出一种含超薄金属内衬轻量化复合材料压力容器的设计与制备技术.研究了缠绕纤维与芯模表面间滑线系数的表征方法,提出了基于工艺可实现的精密缠绕理论;研制出0.8mm厚超薄铝合金内衬;建立了仿壁虎脚结构的界面层设计理论模型,制备出超薄金属内衬与复合材料层间的超强界面层;掌握了复合材料结构的损伤自修复方法,提高了复合材料压力容器的可重复使用次数,所研制的轻量化复合材料压力容器相比同容积、同压力的金属容器减重70%.  相似文献   

4.
复合材料是由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料。这种新材料既保留原组成材料的重要特色,又通过复合效应获得原组分所不具备的性能。 纤维复合材料是复合材料按照结构分类中的一种,是以一种纤维材料为基体,另一种纤维材料为增强体,将各种纤维增强体置于基体材料内复合而成的新材料。各种组成纤维材料在性能上能互相取长补短,产生协同效应,使纤维复合材料的综合性能优于原组成材料,从而满足各种不同需求。例如:玻璃纤维、碳纤维、芳纶纤维等。其中就玻璃纤维而言,由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到1O%以上。其应用范围也不仅局限于军用方面,民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品,各类耐高温制品以及轮胎帘子线等。 迄今为止,我国高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模产业,现阶段年产可达500吨。碳纤维复合材料具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。 在纤维复合材料主要应用领域中,由于它与传统材料相比有很多优点:比强度和比模量高;抗疲劳性好;减振能力好;高温性能好;破损安全性好;性能的各向异性及可设计性强等,使得在桥梁和房屋补强、隧道工程以及大型储仓修补和加固中市场前景看好。  相似文献   

5.
一、概述 纤维缠绕玻璃钢夹砂管为环氧树脂缠绕玻璃纤维且中间含有一定石英砂的一种新型管材,是1998年建设部科技成果重点推广项目(编号:98508),其结构分为内衬层、结构层和表面层.内衬层是由表面毡增强的内表层和短切毡增强的次内层组成,使管道内表面光滑、防腐、防渗.结构层是由连续纤维缠绕层和树脂沙浆层组成,主要作用是承受荷载、抵抗变形.表面层是由抗老化剂和树脂配制而成,主要作用是保护并防止老化.因此纤维缠绕玻璃钢夹砂管道具有以下特点:  相似文献   

6.
由碳纤维看新材料对新技术的引导   总被引:1,自引:0,他引:1  
吕春祥 《太原科技》2010,194(3):26-28
1碳纤维的结构与性能 碳纤维是指碳质量分数在90%~95%之间的无机高分子纤维,是一种新型非金属材料,具有耐高温、耐腐蚀、抗疲劳、强度高、纤维密度低等特点。碳纤维的主要用途是与树脂、金属、陶瓷、混凝土等基体复合,构成复合材料,用作航空航天、汽车、体育器械、纺织、化丁机械及医学等领域的结构材料。碳纤维增强环氧树脂复合材料的比强度、比模量综合指标,在现有结构材料中是最高的。在强度、刚度、重量、疲劳特性等有严格要求的领域,以及在要求化学稳定性高的场合,碳纤维复合材料都颇具优势。  相似文献   

7.
纤维增强树脂基复合材料具有优异的力学性能,其应用领域十分广阔.在其中的许多应用中,复合材料会发生大变形.本文建立了大变形条件下纤维增强树脂基复合材料的细观力学模型和均匀化方法,计算了复合材料在不同应变情况下的有效切线模量,研究了纤维性能、体分比和组成方式对复合材料有效性能的影响.研究表明,在大变形条件下,复合材料的有效切线性能随着纤维性能和体分比的提高而显著提高,而纤维束增强复合材料的有效切线性能要优于单丝纤维增强复合材料的有效切线性能.  相似文献   

8.
基于蒙特卡罗模拟的CFRP缠绕压力容器可靠性分析   总被引:1,自引:0,他引:1  
对具有多维基本随机变量的碳纤维复合材料(carbon fiber reinforced plastics,CFRP)缠绕压力容器提出一种可靠性分析方法.选取CFRP单向板弹性常数、基本强度、纤维缠绕角和压力容器纵环向层壁厚作为基本设计变量,制备CFRP单向板试件和CFRP缠绕压力容器,并通过大量试验获得各变量的概率统计分布.根据经典层合壳体理论和Tsai-Wu失效准则对CFRP缠绕压力容器进行结构失效演变及应力分析,基于可靠性分析的极限状态方程,完成压力容器失效载荷与失效概率分布以及重要随机变量对失效概率分布影响规律的数值模拟.模拟结果与试验结果基本符合,验证了本文分析方法的准确性.  相似文献   

9.
纤维缠绕复合材料气瓶研究进展   总被引:1,自引:0,他引:1  
纤维缠绕复合材料气瓶具有高比强度和比模量、抗疲劳、抗腐蚀等优点,已经成为研究的焦点.文中分析了纤维缠绕复合材料气瓶在国内外的研究进展,并进行了归纳总结,主要内容包括:纤维缠绕复合材料气瓶的国内外标准、制造过程中应考虑的主要因素、失效准则、失效模式以及优化设计.通过对比发现,Tsai-Wu失效准则预测的失效压力与实验值最接近.提出了一些预防复合材料气瓶失效的措施,对气瓶的安全使用有一定的借鉴作用.最后指出了未来研究的重点.  相似文献   

10.
刘守彬 《科技资讯》2010,(19):136-137
玻璃纤维增强塑料(FRP)又称玻璃钢,是复合材料的重要组成部分。它综合了几种材料功能,同时能够形成新的特性的纤维增强复合材料,具有比强度和比刚度高、可设计性强、抗疲劳性能好、耐腐蚀性能好以及便于大面积整体成型和具有特殊的电磁性能等独特优点使其制品己遍及国民经济各个领域,如电气工程、建筑工程、交通运输、航空航天、化学工业、日用产品及工艺品等。  相似文献   

11.
为得到真实海水环境下海水海砂混凝土(SWSSC)内纤维增强复合材料(FRP)筋的性能退化规律,在真实海水浸泡下对SWSSC内的玄武岩纤维增强复合材料(BFRP)筋和玻璃纤维增强复合材料(GFRP)筋的拉伸性能退化进行了试验研究,同时,用扫描电子显微镜(SEM)对两种筋材进行了微观观察.试验参数包括筋材种类(BFRP筋和GFRP筋)、腐蚀龄期(30 d、50 d、60 d和90 d),测试性能为不同腐蚀龄期下两种筋材的拉伸强度和弹性模量.另外,对试验所处海域年平均相对湿度下SWSSC内的BFRP筋拉伸强度保留率进行了预测.结果表明:SWSSC内BFRP筋拉伸强度退化速度快于GFRP筋,两种筋材弹性模量无明显退化;SWSSC内的BFRP筋和GFRP筋,其拉伸强度退化主要是由树脂的水解或纤维-树脂界面性能退化引起.通过预测,在海南省海口市真实海水环境下,SWSSC内的BFRP筋拉伸强度保留率在50年后的预测值为75.6%(环境相对湿度为82%).  相似文献   

12.
碳纤维增强镁合金层合板拉伸性能和层间断裂韧性   总被引:1,自引:0,他引:1  
玻璃纤维增强铝金属层合板,已广泛应用于航空、航天等领域。现采用密度更小的镁合金板取代铝合金板,并用抗拉强度更高、弹性模量更大的碳纤维来代替玻璃纤维,会得到一种新型的复合材料——碳纤维增强镁合金层合板。通过对不同纤维/树脂复合材料体积比的碳纤维增强镁合金层合板进行拉伸以及单悬臂梁试验,分别得到其强度、刚度及界面断裂韧性等机械性能。并与工程实际中广泛使用的玻璃纤维增强铝合金层合板进行比较。结果表明,碳纤维增强镁合金层合板具有比玻璃纤维增强铝合金层合板更高的比强度、比刚度以及界面断裂韧性。碳纤维增强镁合金层合板是一种非常有前途的新型复合材料。  相似文献   

13.
采用折叠变形法修复技术安装复合材料内衬管过程中需要充分考虑折叠对材料内部性能的影响.对复合材料内衬管在折叠和恢复展开过程进行了有限元建模分析,考虑了折叠后绑胶带维持管U形以及施加内压胶带撑破的过程,充分对复合材料内衬管在折叠和恢复过程中的应力及应变进行分析,发现在折叠成U形管过程中容易使复合材料内衬管纤维增强层出现损伤,从而影响复合材料内衬管的使用寿命.  相似文献   

14.
采用熔融浸渍法制备了长玻璃纤维增强PA66复合材料,通过对树脂熔体黏度、预浸料浸渍程度和纤维断裂率、材料力学性能进行测试及扫描电子显微镜(SEM)观察,分别研究了不同含量的增韧剂乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH)和乙烯-辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)对复合材料性能的影响。实验结果表明:随着含量的提高,两种增韧剂均能够使长玻璃纤维增强PA66复合材料的冲击强度增大,树脂与纤维界面的结合程度提升,其中POE-g-GMA的增韧及界面改善效果更为明显,可有效提升复合材料的力学性能。  相似文献   

15.
PBO纤维的基本性能实验研究   总被引:11,自引:0,他引:11  
对PBO纤维的拉伸性能、耐热性等物理性能进行了实验测试,并与F-12 和Kevlar-49芳纶纤维进行了对比,对由PBO纤维与环氧树脂基体复合成型的单向纤维增强环形试样,测试了其拉伸强度、弹性模量和层间剪切强度,结果表明:PBO纤维股纱的拉伸强度比F-12和Kevlar-49分别高24.4%和52.8%以上,单向纤维复合材料的拉伸强度分别高约37.2%和92.8%,而热性也高约166℃,但PBO纤维与环氧树脂基体的界面粘结性很差,层间剪切强度仅为23-27MPa。  相似文献   

16.
分析了MBWK织物的结构特点与警用复合材料防弹头盔的弹道性能和成型性能之间的关系,指出MBWK织物组织点较少,衬纱处于伸直状态,弹击应变波传播速度快,剪切应力小;织物结构整体性好,层间分裂阻抗性高;捆绑系统采用罗纹组织,具有一定的弹性,可以不经折叠或缝接而模压成复杂的曲面形状。讨论了UHMWPE纤维的物理、机械等性质,指出该纤维密度低,比强度高,比模量大,在复合材料防弹头盔领域具有极大的应用潜力。  相似文献   

17.
给排水管道性能劣化及其引发的严重城市内涝和次生灾害对现有城市给排水管道修复提出了更高的技术要求。近年来,纤维增强材料因具有比强度高、力学性能好、抗化学腐蚀性强和耐疲劳性能优异等优势,从各类修复材料中脱颖而出,在城市给排水管道修复中逐步得到应用。针对给排水管道纤维修复材料的基本性能、应用形式及修复效果评价等关键技术问题,分析了管道喷涂材料、纤维增强内衬管和刚性管道加固等三种应用形式及其修复机理;从试验测试、数值模拟和现场调查评估等角度总结了纤维增强材料的管道修复效果评价方法。最后,从新材料开发、纤维材料-管道界面粘结性能及纤维修复材料的环境效应方面展望了纤维增强材料在管道修复中的应用前景。  相似文献   

18.
影响管道寿命的主要原因是腐蚀。常用的管材硬聚氯乙烯(PVC)虽有良好的耐腐蚀性,但机械力学强度不高,只能用于低压(0.2~0.6MPa)输送管线,且耐热性较差,环境温度一般不宜超过60℃。而纤维缠绕玻璃钢具有很高的力学强度,耐热性也远优于PVC,并具一定的耐腐蚀性能。综合二者的优点,我们以硬聚氯乙烯管作内衬管,外部用缠绕工艺制成玻璃钢增强层,制成硬聚氯乙烯/纤维缠绕玻璃钢复合管(简称PVC/FRPFW复合管),用于较高压力的腐蚀性介质的输送,取得了较好的效果。  相似文献   

19.
通过对黄麻纤维热处理、碱处理、硅烷偶联剂处理和异氰酸酯处理进行表面改性,并对改性黄麻纤维布进行热压工艺处理,最后采用VARTM成型工艺制备黄麻纤维增强环氧树脂复合材料,并对其性能进行了系统研究.通过扫描电镜(SEM)分析表明,热处理和碱处理的黄麻纤维增强环氧树脂复合材料的界面粘结未得到明显改善,而通过硅烷偶联剂和异氰酸酯处理的黄麻纤维增强环氧树脂复合材料的界面粘结性能得到了显著的提高.将硅烷偶联剂和异氰酸酯处理的黄麻纤维布通过热压处理不仅可以增加复合材料中黄麻纤维体积含量,而且可以提高复合材料的综合性能,复合材料力学性能研究表明,经硅烷偶联剂处理后的黄麻纤维增强复合材料拉伸强度、模量和弯曲强度分别提高了18.6%,71.4%和50.2%.经异氰酸酯处理的黄麻纤维增强复合材料的拉伸强度、模量和弯曲强度分别提高了16.3%,34.0%和50.3%.  相似文献   

20.
复合材料基体固化成型工艺综述   总被引:4,自引:0,他引:4  
树脂基复合材料具有比强度高、比模量高、抗疲劳性能优良、工艺性能良好及具有可设计性等特点,一直受到工业界的重视,各种复合材料产品被应用到各行各业,尤其是在航空航天领域。复合材料从原材料到形成制品的过程,都需经过固化与成型,方法已经有几十种。文中介绍了国内外复合材料主要的基体固化方法、成型工艺和相关研究;固化方法主要有热固化、辐射固化与微波固化等,成型工艺主要有模压成型、渗透成型、缠绕成型与拉挤成型等;同时,对工艺研究与应用也进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号