共查询到20条相似文献,搜索用时 15 毫秒
1.
SIFT特征匹配算法改进研究 总被引:1,自引:0,他引:1
为了适应于景象匹配导航及制导等实时性要求较高的领域,对SIFT特征匹配算法进行改进,提出了基于D^2OG特征点检测算子的改进的SIFT特征匹配算法。改进算法用D^2OG金字塔的过零点检测代替DOG金字塔的极值点检测提取尺度不变特征点,巧妙简化高斯金字塔的结构,降低了算法复杂度和时间代价。以标准测试图库中大量不同几何和灰度畸变图像为基础的仿真实验表明,基于D^2OG特征点检测算子的改进的SIFT特征匹配算法在保持原算法鲁棒性和精度的前提下,较大的提高了算法实时性。Abstract: An improved Scale Invariant Feature Transform algorithm was proposed based on D^2OG interest point detector for better real time performance in the application of scene matching navigation and so on. In order to detect the scale invariant interest point, a D^2OG pyramid is built and extreme detection in the DOG pyramid was replaced by zero detection in the D^2OG pyramid, which simplified the structure of DOG pyramid, so as to lower the complexity of algorithm, lessen the running time. Numerous experiments were carried out on standard testing images under various shooting conditions such as geometric distortion, illumination variation and so on. The result shows that the method has a big progress in the real time performance compared to the original one, with equally robustness and precision. 相似文献
2.
基于倒谱分析的被动水声目标分类 总被引:3,自引:0,他引:3
被动声纳捕捉的目标一般是船舶或鱼雷的辐射噪声。该辐射噪声可视为周期性激励与信道传递函数的卷积构成。利用同态分析进行目标分类,即通过倒谱分析将各噪声分量变为线性相加关系,实现各信号分量以及信道的分离,以便提取信号特征进行分类。通过对实际信号的分析,证明水声信号的倒谱特征在概率意义上含有比较稳定的类别信息,基于支持向量机的分类实验结果,说明了根据倒谱特征识别被动水声目标的可行性。 相似文献
3.
Local diversity AdaBoost support vector machine (LDAB-SVM) is proposed for large scale dataset classification problems. The training dataset is split into several blocks firstly, and some models based on these dataset blocks are built. In order to obtain a better performance, AdaBoost is used in each model building. In the boosting iteration step, the component learners which have higher diversity and accuracy are collected via the kernel parameters adjusting. Then the local models via voting method are integrated. The experimental study shows that LDAB-SVM can deal with large scale dataset efficiently without reducing the performance of the classifier. 相似文献
4.
5.
提出了一种常用数字通信信号调制分类算法。针对MASK、MFSK和MPSK调制,选取截获接收机输出信号的瞬时幅度、时频脊线和差分基带信号作为分类特征,利用概率密度估计算法求取分类特征的分布函数,通过构造支持矢量机分类器确定分布函数的峰值个数,从而在多种噪声背景下实现了信号调制类型的自动分类。仿真实验表明,当信噪比大于5 dB时识别率可达80%以上。 相似文献
6.
基于目标特征的动态支持向量机研究 总被引:2,自引:0,他引:2
研究了将待识别目标特征与SVM相结合的动态SVM。提出一种以目标特征与每个训练样本间的距离度量SVM软间隔优化问题中惩罚参数C的方法,可根据两者间距离大小赋予每个训练样本一个惩罚参数,从而更好地体现了不同训练样本对于待识别目标特征的价值。然后,根据各样本惩罚参数的大小重构动态训练样本集,训练以待识别目标特征的分类为核心任务的动态SVM,寻求以目标特征为中心的局部空间的最优分类面。并对两类水声目标的识别情况进行了比较,实验表明效果好于SVM和k-近邻分类器。 相似文献
7.
支持向量机在车辆目标识别中的应用 总被引:2,自引:0,他引:2
提出了利用支持向量机对战场侦察雷达目标回波信号进行处理,以实现对卡车、坦克等在地面运动的车辆目标进行分类识别的一种新算法。首先对雷达接收到的目标回波信号作频域分析,从中提取待分类目标信号的特征向量,然后利用所建立的支持向量机模型对目标信号作训练和识别,最后与经典谱分析和神经网络的方法作比较,并采用实际数据验证这种识别方法的有效性。 相似文献
8.
针对已有空中目标识别方法存在的经验风险大、识别率低等不足,依据空中目标的分类原则和纠错码设计原则,设计了针对该问题的纠错码,并训练了码位分类器,最后给出了基于支持向量机的空中目标大类别分类算法。该方法采用纠错编码支持向量机的多类分类技术,降低了经验风险,能对误差进行自动修正,有效地提高了识别率和识别速度。最后给出了一个算例,结果证实了该算法的有效性,并给出了与同类算法的比较结果。 相似文献
9.
基于支持矢量机和循环累积量的调制识别算法 总被引:2,自引:0,他引:2
利用通信信号的循环平稳特性,在循环累积量域内构造信号分类特征矢量,采用支持矢量机将分类特征矢量映射到高维空间并构建最优分类超平面,实现对QAM调制信号的自动识别。该算法解决了样本在低维空间中的不可分问题,具有良好的泛化推广性能,并且可在多种调制信号环境下实现对感兴趣信号类型的识别。理论分析和仿真结果均证明了算法的正确性和有效性。 相似文献
10.
The different approaches used for target decomposition (TD) theory in radar polarimetry are reviewed and three main types of theorems are introduced: those based on Mueller matrix, those using an eigenvector analysis of the coherency matrix, and those employing coherent decomposition of the scattering matrix. Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated success in many fields. A new algorithm of target classification, by combining target decomposition and the support vector machine, is proposed. To conduct the experiment, the polarimetric synthetic aperture radar (SAR) data are used. Experimental results show that it is feasible and efficient to target classification by applying target decomposition to extract scattering mechanisms, and the effects of kernel function and its parameters on the classification efficiency are significant. 相似文献
11.
提出了一种改进的基本图像特征(basic image feature, BIF) 直方图纹理分类算法。首先在4个尺度上分别确定图像中每个像素点对应的BIF,然后在每个尺度上分别提取6维直方图特征及3维高阶统计特征共36维特征,最后使用支持向量机(support vector machine, SVM) 作分类器对实验图像进行训练和分类。实验表明,所提方法降低了算法的计算复杂度和运行时间,对噪声有较好的鲁棒性。 相似文献
12.
Classification using wavelet packet decomposition and support vector machine for digital modulations
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications. 相似文献
13.
针对SVM在大类别模式分类中存在的问题,提出了一种基于模糊核聚类的SVM多类分类方法,并给出了一种高效的半模糊核聚类算法。该方法基于模糊核聚类方法生成模糊类,并采用树结构将多个SVM组合起来实现多类分类。模糊核聚类方法不但能够实现更为准确的聚类,而且能够挖掘模糊类的外围、不同模糊类之间的交叠情况等信息,利用这些信息能有效提高分类器的性能。实验表明,所提方法比传统方法具有更高的速度和精度。 相似文献
14.
1 .INTRODUCTIONThe ai mof modulation classification ( MC) is toiden-tifythe modulationtype[1]of a communicationsignal .It plays ani mportant rolein many cooperative or non-cooperative communication applications such as soft-ware radio,intelligent modem,andelectronic surveil-lance system[2].Inthe past ,such workrelied heavilyon human operators ,which becomesless practical dueto the increasing density of the frequency spectrumand the increasing complexity and diversity of themodulation type… 相似文献
15.
Decision tree support vector machine based on genetic algorithm for multi-class classification 下载免费PDF全文
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods. 相似文献
16.
17.
18.
为提高支持向量机(support vector machine, SVM)算法对大规模数据的适应能力,加快SVM算法的分类速度,提出一种基于决策树的快速SVM分类方法。该方法的重点在于构建一棵决策树,将大规模问题分解为相对简单的子问题,树中节点由线性支持向量机组成,每个节点包含一个决策超平面,分类过程取决于节点的数量。此方法在分类复杂样本时避免了使用非线性核函数。并且由于使用线性核函数,则不用进行模型选择,进一步加快了样本的分类速度。实验表明,针对大规模多特征数据的非线性分类问题,该方法比传统方法具有更高的速度。 相似文献
19.
20.
基于线性卷积系数扩展特征的雷达目标识别 总被引:2,自引:2,他引:0
针对雷达目标高分辨距离像识别中的有效特征提取问题,提出了一种基于线性卷积系数扩展特征的雷达目标识别方法。该方法将高分辨距离像及其线性卷积系数扩展特征作为联合特征在核空间中进行特征选择,并采用支持向量机(support vector machine, SVM)作为分类器实现雷达目标识别。核空间中的特征选择可以解决联合特征高特征维数问题和非线性可分问题,进而提高SVM识别性能,而线性卷积系数扩展特征相比高分辨距离像具有更强的稳定性。同时,可以在一定程度上弥补因特征选择带来的高分辨距离像部分距离单元特征分量缺失。基于5种飞机目标高分辨距离像的仿真实验证明了该方法的有效性。 相似文献