首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human sulfatases: A structural perspective to catalysis   总被引:4,自引:0,他引:4  
The sulfatase family of enzymes catalyzes hydrolysis of sulfate ester bonds of a wide variety of substrates. Seventeen genes have been identified in this class of sulfatases, many of which are associated with genetic disorders leading to reduction or loss of function of the corresponding enzymes. Amino acid sequence homology suggests that the enzymes have similar overall folds, mechanisms of action, and bivalent metal ion-binding sites. A catalytic cysteine residue, strictly conserved in prokaryotic and eukaryotic sulfatases, is post-translationally modified into a formylglycine. Hydroxylation of the formylglycine residue by a water molecule forming the activated hydroxylformylglycine (a formylglycine hydrate or a gem-diol) is a necessary step for the enzyme's sulfatase activity. Crystal structures of three human sulfatases, arylsulfatases A and B(ARSA and ARSB), and estrone/dehydroepiandrosterone sulfatase or steroid sulfatase (STS), also known as arylsulfatase C, have been determined. While ARSA and ARSB are water-soluble enzymes, STS has a hydrophobic domain and is an integral membrane protein of the endoplasmic reticulum. In this article, we compare and contrast sulfatase structures and revisit the proposed catalytic mechanism in light of available structural and functional data. Examination of the STS active site reveals substrate-specific interactions previously identified as the estrogen-recognition motif. Because of the proximity of the catalytic cleft of STS to the membrane surface, the lipid bilayer has a critical role in the constitution of the active site, unlike other sulfatases.  相似文献   

2.
The ATP-binding cassette family is one of the largest groupings of membrane proteins, moving allocrites across lipid membranes, using energy from ATP. In bacteria, they reside in the inner membrane and are involved in both uptake and export. In eukaryotes, these transporters reside in the cell’s internal membranes as well as in the plasma membrane and are unidirectional—out of the cytoplasm. The range of substances that these proteins can transport is huge, which makes them interesting for structure–function studies. Moreover, their abundance in nature has made them targets for structural proteomics consortia. There are eight independent structures for ATP-binding cassette transporters, making this one of the best characterised membrane protein families. Our understanding of the mechanism of transport across membranes and membrane protein structure in general has been enhanced by recent developments for this family.  相似文献   

3.
4.
Muscle ultrastructure is characterised by a complex arrangement of many protein-protein interactions. The sarcomere is the basic repeating unit of muscle, formed by two transverse filament systems: the thick and thin filaments. While actin and myosin are the main contractile elements of the sarcomere, other proteins act as scaffolds, control ultrastructure composition, regulate muscle contraction, and transmit tension between sarcomeres and hence to the whole myofibril. Elucidation of the structures of muscle proteins by X-ray crystallography and nuclear magnetic resonance spectroscopy has been essential in understanding muscle contraction, enabling us to relate biological to structural information. These structures reveal how components of the muscle interact, how different factors influence conformational changes within these proteins, and how mutant muscle proteins may interfere with the regulatory fine-tuning of the contractile machinery, hence leading to disease in some cases. Here, structures solved within the sarcomere have been reviewed in order to put the numerous components into context.Received 28 June 2004; received after revision 25 July 2004; accepted 28 July 2004  相似文献   

5.
Summary Retinal pigment epithelium (RPE) cells were collected from, bovine eyes using a new method. The cells were harvested by vortexing the RPE and underlying choroid in 0.05 M citrate phosphate buffer, pH 5. RPE cells recovered by this method were compared to a standard method by microscopic examination of cell integrity, estimation of total protein, and assay of 11-cis and all-trans retinyl ester hydrolase (REH) activities. Results suggest that this method collects RPE cells of good integrity and with a significantly higher protein yield than the conventional method. Additionally, a much higher retinyl ester hydrolase activity was noted. Therefore we propose that this procedure offers a new and convenient method in the collection of RPE proteins for certain purposes such as enzyme purification.  相似文献   

6.
Fibroblast growth factor 21 (FGF21) has been proposed as a novel putative therapeutic agent in type 2 diabetes. A large amount of data, predominantly obtained from murine models but also from non-human primates, suggest that FGF21 ameliorates obesity-associated hyperglycemia and hyperlipidemia primarily via effects on adipose tissue and the pancreas. In addition, FGF21 has been reported to play a pivotal regulatory role in starvation and ketosis. However, while it is clear that FGF21 has potent effects in vivo in several animal models, the exact mechanisms remain elusive. Moreover, very recent results from different human cohort studies have shown a paradoxical regulation of plasma FGF21 in obesity and type 2 diabetes as well as other important qualitative differences in the effects and regulation of FGF21 between rodents and humans. This review focuses on the most recently published data on FGF21 with emphasis on results obtained in humans.  相似文献   

7.
The surge in apoptosis research and the discovery of the phosphatidylserine binding properties of annexin A5 have propelled a tremendous interest in cell death detection technologies. In the past years, annexin A5 has evolved from an efficient assay for detection of apoptotic cells in vitro to an in vivo molecular imaging technology with potential clinical use. A second key discovery, the specific internalization properties of annexin A5, has opened the opportunity to use annexin A5 for therapeutic applications. Annexin A5-mediated internalization creates a novel therapeutic platform for targeted drug delivery and cell entry to treat various diseases, including cancer and cardiovascular disease. Received 29 June 2007; received after revision 19 July 2007; accepted 15 August 2007  相似文献   

8.
In this multi-author issue several aspects of the ribonuclease A superfamily are reviewed. This superfamily can be subdivided in a number of mammalian and other vertebrate ribonuclease families. In the introduction chapter the titles of the other contributions are presented. There is little uniformity in the nomenclature of ribonucleases, caused in part by gene duplications, which have occurred independently in several mammalian lineages, and which are nice examples for explaining orthology and paralogy in molecular evolution.  相似文献   

9.
Flavocytochrome b 558 is the catalytic core of the respiratory-burst oxidase, an enzyme complex that catalyzes the NADPH-dependent reduction of O2 into the superoxide anion O2 - in phagocytic cells. Flavocytochrome b 558 is anchored in the plasma membrane. It is a heterodimer that consists of a large glycoprotein gp91phox (phox for phagocyte oxidase) (β subunit) and a small protein p22phox (α subunit). The other components of the respiratory-burst oxidase are water-soluble proteins of cytosolic origin, namely p67phox, p47phox, p40phox and Rac. Upon cell stimulation, they assemble with the membrane-bound flavocytochrome b 558 which becomes activated and generates O2 -. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections, illustrating the role of O2 - and the derived metabolites H2O2 and HOCl in host defense against invading microorganisms. The electron carriers, FAD and hemes b, and the binding site for NADPH are confined to the gp91phox subunit of flavocytochrome b 558 . The p22phox subunit serves as a docking site for the cytosolic phox proteins. This review provides an overview of current knowledge on the structural organization of the O2 --generating flavocytochrome b 558 , its kinetics, its mechanism of activation and the regulation of its biosynthesis. Homologues of gp91phox, called Nox and Duox, are present in a large variety of non-phagocytic cells. They exhibit modest O2 --generating oxidase activity, and some act as proton channels. Their role in various aspects of signal transduction is currently under investigation and is briefly discussed. Received 28 May 2002; received after revision 20 June 2002; accepted 24 June 2002  相似文献   

10.
11.
The production of antimicrobial peptides represents a first-line host defense mechanism of innate immunity that is widespread in nature. Only recently such effectors were isolated in crustacean species, whereas numerous antimicrobial peptides have been characterized from other arthropods, both insects and chelicerates. This review presents findings on a family of antimicrobial peptides, named penaeidins, isolated from the shrimp Penaeus vannamei. Their structure and antimicrobial properties as well as their immune function will be discussed through analyses of penaeidin gene expression and peptide distribution upon microbial challenge. Received 21 January 2000; received after revision 10 March 2000; accepted 10 March 2000  相似文献   

12.
13.
Much effort has been devoted recently to expanding the amino acid repertoire in protein biosynthesis in vivo. From such experimental work it has emerged that some of the non-canonical amino acids are accepted by the cellular translational machinery while others are not, i.e. we have learned that some determinants must exist and that they can even be anticipated. Here, we propose a conceptual framework by which it should be possible to assess deeper levels of the structure of the genetic code, and based on this experiment to understand its evolution and establishment. First, we propose a standardised repertoire of 20 amino acids as a basic set of conserved building blocks in protein biosynthesis in living cells to be the main criteria for genetic code structure and evolutionary considerations. Second, based on such argumentation, we postulate the structure and evolution of the genetic code in the form of three general statements: (i) the nature of the genetic code is deterministic; (ii) the genetic code is conserved and universal; (iii) the genetic code is the oldest known level of complexity in the evolution of living organisms that is accessible to our direct observation and experimental manipulations. Such statements are discussed as our working hypotheses that are experimentally tested by recent findings in the field of expanded amino acid repertoire in vivo. Received 30 June 1999; accepted 9 July 1999  相似文献   

14.
It has been widely accepted that many financial and economic variables are non‐linear, and neural networks can model flexible linear or non‐linear relationships among variables. The present paper deals with an important issue: Can the many studies in the finance literature evidencing predictability of stock returns by means of linear regression be improved by a neural network? We show that the predictive accuracy can be improved by a neural network, and the results largely hold out‐of‐sample. Both the neural network and linear forecasts show significant market timing ability. While the switching portfolio based on the linear forecasts outperforms the buy‐and‐hold market portfolio under all three transaction cost scenarios, the switching portfolio based on the neural network forecasts beats the market only if there is no transaction cost. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
G protein-coupled receptors (GPCRS) represent a class of integral membrane proteins involved in many biological processes and pathologies. Fifty percent of all modern drugs and almost 25% of the top 200 bestselling drugs are estimated to target GPCRs. Despite these crucial biological implications, very little is known, at atomic resolution, about the detailed molecular mechanisms by which these membrane proteins are able to recognize their extra-cellular stimuli and transmit the associated messages. Obviously, our understanding of GPCR functioning would be greatly facilitated by the availability of high-resolution three-dimensional (3D) structural data. However, expression, solubilization and purification of these membrane proteins are not easy to achieve, and at present, only one 3D structure has been determined, that of bovine rhodopsin. This review presents and compares the different successful strategies which have been applied to solubilize and purify recombinant GPCRs in the perspective of structural biology experiments. Received 21 November 2005; received after revision 20 January 2006; accepted 2 February 2006 An erratum to this article is available at .  相似文献   

16.
The Marburg neo-Kantians argue that Hermann von Helmholtz’s empiricist account of the a priori does not account for certain knowledge, since it is based on a psychological phenomenon, trust in the regularities of nature. They argue that Helmholtz’s account raises the ‘problem of validity’ (Gültigkeitsproblem): how to establish a warranted claim that observed regularities are based on actual relations. I reconstruct Heinrich Hertz’s and Ludwig Wittgenstein’s Bild theoretic answer to the problem of validity: that scientists and philosophers can depict the necessary a priori constraints on states of affairs in a given system, and can establish whether these relations are actual relations in nature. The analysis of necessity within a system is a lasting contribution of the Bild theory. However, Hertz and Wittgenstein argue that the logical and mathematical sentences of a Bild are rules, tools for constructing relations, and the rules themselves are meaningless outside the theory. Carnap revises the argument for validity by attempting to give semantic rules for translation between frameworks. Russell and Quine object that pragmatics better accounts for the role of a priori reasoning in translating between frameworks. The conclusion of the tale, then, is a partial vindication of Helmholtz’s original account.  相似文献   

17.
Most hydrogenases (H2ases), the enzymes that produce or oxidize dihydrogen, possess dimetallic active sites and belong to either one of two phylogenetically distinct classes, the [NiFe] and the [FeFe] H2ases. These families of H2ases share a number of similarities regarding active site structure and reaction mechanism, as a result of convergent evolution. They are otherwise alien to each other, in particular with respect to protein sequence and structure, maturation mechanisms, and distribution among the realms of life. One of the interesting features of [FeFe] H2ases is their occurrence in anaerobic bacteria, anaerobic protists, and mitochondriate eukaryotes. They thus have the potential to report on important evolutionary events, including transitions from the prokaryote to the eukaryote lifestyle. Genome sequences yield a variety of [FeFe] H2ase sequences that have been implemented to shed light on the evolution of these proteins and their host organisms.  相似文献   

18.
Summary By rearing the predacious miteAmblyseius potentillae in a daily temperature cycle in constant darkness it could be shown that diapause may be thermoperiodically induced. When the same experiments were performed using diets without vitamin A it appeared that vitamin A is necessary to achieve a state of reproductive diapause in this mite.2 February 1987  相似文献   

19.
A mistletoe lectin was isolated from water extracts of Korean mistletoe, a subspecies of Viscum album, grown on Quercus mongolica using CM-Sepharose chromatography followed by an affinity chromatography on a concanavalin A-Sepharose column. The compound proved to be a mistletoe lectin II with D-galactose and N-acetyl-D-galactosamine specificity. Matrix-assisted laser desorption time-of-flight mass spectroscopy showed it to have an average molecular mass of 62.7 kDa and to consist of two subunits of 30.6 kDa and 32.5 kDa. It was a basic protein with isoelectric points of 9.4 and 9.6 by capillary isoelectric focusing and was cytotoxic to Molt4 cell. Received 17 November 1998; received after revision 3 March 1999; accepted 3 March 1999  相似文献   

20.
Glutamate synthase: a fascinating pathway from L-glutamine to L-glutamate   总被引:1,自引:0,他引:1  
Glutamate synthase is a multicomponent iron-sulfur flavoprotein belonging to the class of N-terminal nucleophile amidotransferases. It catalyzes the conversion of L-glutamine and 2-oxoglutarate into two molecules of L-glutamate. In recent years the X-ray structures of the ferredoxin-dependent glutamate synthase and of the a subunit of the NADPH-dependent glutamate synthase have become available. Thanks to X-ray crystallography, it is now known that the ammonia reaction intermediate is transferred via an intramolecular tunnel from the amidotransferase domain to the synthase domain over a distance of about 32Å. Although ammonia channeling is a recurrent theme for N-terminal nucleophile and triad-type amidotransferases, the molecular mechanisms of ammonia transfer and its control are different for each known amidotransferase. This review focuses on the intriguing mechanism of action and self-regulation of glutamate synthase with a special focus on the structural data.Received 8 August 2003; received after revision 15 September 2003; accepted 17 September 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号