首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sumoylation regulates diverse biological processes   总被引:8,自引:0,他引:8  
Ten years after its discovery, the small ubiquitin-like protein modifier (SUMO) has emerged as a key regulator of proteins. While early studies indicated that sumoylation takes place mainly in the nucleus, an increasing number of non-nuclear substrates have recently been identified, suggesting a wider stage for sumoylation in the cell. Unlike ubiquitylation, which primarily targets a substrate for degradation, sumoylation regulates a substrate’s functions mainly by altering the intracellular localization, protein-protein interactions or other types of post-translational modifications. These changes in turn affect gene expression, genomic and chromosomal stability and integrity, and signal transduction. Sumoylation is counter-balanced by desumoylation, and well-balanced sumoylation is essential for normal cellular behaviors. Loss of the balance has been associated with a number of diseases. This paper reviews recent progress in the study of SUMO pathways, substrates, and cellular functions and highlights important findings that have accelerated advances in this study field and link sumoylation to human diseases. Received 19 March 2007; received after version 16 July 2007; accepted 1 August 2007  相似文献   

2.
3.
Emerging roles of the SUMO pathway in development   总被引:1,自引:1,他引:0  
  相似文献   

4.
PIAS/SUMO: new partners in transcriptional regulation   总被引:19,自引:0,他引:19  
  相似文献   

5.
Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway—nonsense-mediated RNA decay (NMD)—serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that “NMD therapy” may provide clinical benefit by downmodulating stress responses.  相似文献   

6.
7.
The skin being a protective barrier between external and internal (body) environments has the sensory and adaptive capacity to maintain local and global body homeostasis in response to noxious factors. An important part of the skin response to stress is its ability for melatonin synthesis and subsequent metabolism through the indolic and kynuric pathways. Indeed, melatonin and its metabolites have emerged as indispensable for physiological skin functions and for effective protection of a cutaneous homeostasis from hostile environmental factors. Moreover, they attenuate the pathological processes including carcinogenesis and other hyperproliferative/inflammatory conditions. Interestingly, mitochondria appear to be a central hub of melatonin metabolism in the skin cells. Furthermore, substantial evidence has accumulated on the protective role of the melatonin against ultraviolet radiation and the attendant mitochondrial dysfunction. Melatonin and its metabolites appear to have a modulatory impact on mitochondrion redox and bioenergetic homeostasis, as well as the anti-apoptotic effects. Of note, some metabolites exhibit even greater impact than melatonin alone. Herein, we emphasize that melatonin–mitochondria axis would control integumental functions designed to protect local and perhaps global homeostasis. Given the phylogenetic origin and primordial actions of melatonin, we propose that the melatonin-related mitochondrial functions represent an evolutionary conserved mechanism involved in cellular adaptive response to skin injury and repair.  相似文献   

8.
9.
10.
11.
Endoplasmic reticulum stress responses   总被引:7,自引:0,他引:7  
In homeostasis, cellular processes are in a dynamic equilibrium. Perturbation of homeostasis causes stress. In this review I summarize how perturbation of three major functions of the endoplasmic reticulum (ER) in eukaryotic cells–protein folding, lipid and sterol biosynthesis, and storing intracellular Ca2+ – causes ER stress and activates signaling pathways collectively termed the unfolded protein response (UPR). I discuss how the UPR reestablishes homeostasis, and summarize our current understanding of how the transition from protective to apoptotic UPR signaling is controlled, and how the UPR induces inflammatory signaling. Received 21 August 2007; received after revision 26 October 2007; accepted 29 October 2007  相似文献   

12.
13.
14.
SIRT1, an ubiquitous NAD(+)-dependent deacetylase that plays a role in biological processes such as longevity and stress response, is significantly activated in response to reactive oxygen species (ROS) production. Resveratrol (Resv), an important activator of SIRT1, has been shown to exert major health benefits in diseases associated with oxidative stress. In ischemia-reperfusion (IR) injury, a major role has been attributed to the mitogen-activated protein kinase (MAPK) pathway, which is upregulated in response to a variety of stress stimuli, including oxidative stress. In neonatal rat ventricular cardiomyocytes subjected to simulated IR, the effect of Resv-induced SIRT1 activation and the relationships with the MAPK pathway were investigated. Resv-induced SIRT1 overexpression protected cardiomyocytes from oxidative injury, mitochondrial dysfunction, and cell death induced by IR. For the first time, we demonstrate that SIRT1 overexpression positively affects the MAPK pathway-via Akt/ASK1 signaling-by reducing p38 and JNK phosphorylation and increasing ERK phosphorylation. These results reveal a new protective mechanism elicited by Resv-induced SIRT1 activation in IR tissues and suggest novel potential therapeutic targets to manage IR-induced cardiac dysfunction.  相似文献   

15.
The molecular mechanism of zinc and cadmium stress response in plants   总被引:8,自引:0,他引:8  
When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway. ROS generation and signaling plays an important duel role in heavy metal detoxification and tolerance. In this review, we will compare the different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species. We will also include the role of metal-induced ROS signal transduction in this comparison, with the aim to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level.  相似文献   

16.
17.
18.
The use of metabolomics to dissect plant responses to abiotic stresses   总被引:1,自引:0,他引:1  
Plant metabolism is perturbed by various abiotic stresses. As such the metabolic network of plants must be reconfigured under stress conditions in order to allow both the maintenance of metabolic homeostasis and the production of compounds that ameliorate the stress. The recent development and adoption of metabolomics and systems biology approaches enable us not only to gain a comprehensive overview, but also a detailed analysis of crucial components of the plant metabolic response to abiotic stresses. In this review we introduce the analytical methods used for plant metabolomics and describe their use in studies related to the metabolic response to water, temperature, light, nutrient limitation, ion and oxidative stresses. Both similarity and specificity of the metabolic responses against diverse abiotic stress are evaluated using data available in the literature. Classically discussed stress compounds such as proline, γ-amino butyrate and polyamines are reviewed, and the widespread importance of branched chain amino acid metabolism under stress condition is discussed. Finally, where possible, mechanistic insights into metabolic regulatory processes are discussed.  相似文献   

19.
Cellular responses to mild heat stress   总被引:12,自引:0,他引:12  
Since its discovery in 1962 by Ritossa, the heat shock response has been extensively studied by a number of investigators to understand the molecular mechanism underlying the cellular response to heat stress. The most well characterized heat shock response is induction of the heat shock proteins that function as molecular chaperones and exert cell cycle regulatory and anti-apoptotic activities. While most investigators have focused their studies on the toxic effects of heat stress in organisms such as severe heat stress-induced cell cycle arrest and apoptosis, the cellular response to fever-ranged mild heat stress has been rather underestimated. However, the cellular response to mild heat stress is likely to be more important in a physiological sense than that to severe heat stress because the body temperature of homeothermic animals increases by only 1–2°C during febrile diseases. Here we provide information that mild heat stress does have some beneficial role in organisms via positively regulating cell proliferation and differentiation, and immune response in mammalian cells.Received 14 May 2004; received after revision 2 August 2004; accepted 16 August 2004  相似文献   

20.
Apoptosis has emerged as a fundamental process important in tissue homeostasis, immune response, and during development. CD95 (also known as Fas), a member of the tumor necrosis factor receptor (TNF-R) superfamily, has been initially cloned as a death receptor. Its cognate ligand, CD95L, is mainly found at the plasma membrane of activated T-lymphocytes and natural killer cells where it contributes to the elimination of transformed and infected cells. According to its implication in the immune homeostasis and immune surveillance, and since several malignant cells of various histological origins exhibit loss-of-function mutations, which cause resistance towards the CD95-mediated apoptotic signal, CD95 has been classified as a tumor suppressor gene. Nevertheless, this assumption has been recently challenged, as in certain pathophysiological contexts, CD95 engagement transmits non-apoptotic signals that promote inflammation, carcinogenesis or liver/peripheral nerve regeneration. The focus of this review is to discuss these apparent contradictions of the known function(s) of CD95.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号