首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
流程参数对丙烷预冷混合制冷剂循环损失的影响   总被引:1,自引:0,他引:1  
在丙烷预冷的混合制冷剂循环液化流程热力分析的基础上,对流程进行分析,并分析了流程中天然气压力、丙烷预冷后天然气的温度、制冷剂进入压缩机时的温度和压力及制冷剂压缩机排气压力对流程各设备损失的影响.分析表明,压缩机的损失占整个流程损失的一半.提高天然气的压力、混合制冷剂压缩机进气温度、混合制冷剂压缩机进排气压力,降低预冷后天然气温度,均可降低整个流程的损失.  相似文献   

2.
流程参数对丙烷预冷混合制冷剂循环Yong损失的影响   总被引:2,自引:0,他引:2  
在丙烷预冷的混合制冷剂循环液化流程热力分析的基础上,对流程进行Yong分析,并分析了流程中天然气压力、丙烷预冷后天然气的温度、制冷剂进入压缩机时的温度和压力及制冷剂压缩机排气压力对流程各设备Yong损失的影响.分析表明,压缩机的Yong损失占整个流程Yong损失的一半.提高天然气的压力、混合制冷剂压缩机进气温度、混合制冷剂压缩机进排气压力,降低预冷后天然气温度,均可降低整个流程的Yong损失.  相似文献   

3.
板翅式换热器入口物流分配不均是造成换热效能降低的主要因素之一,对天然气液化装置稳定和高效的运行产生不利的影响。针对氮气膨胀和混合制冷剂两种天然气液化工艺,分别研究原料气、氮气制冷剂和混合制冷剂物流分配不均对换热器参数和液化工艺性能的影响,得到换热器入口物流分配不均匀度STD(standard deviation,均方差)的临界值,为换热器的选型和天然气液化工艺的设计提供依据。结果表明:相同STD值下,天然气液化性能受不同物流分配不均影响程度大小依次为氮气制冷剂、混合制冷剂和原料气;倾斜严重影响混合制冷剂的分配及换热效果,倾斜角度由0°增加至20°时,液相STD值由1.3增至3.9,天然气液化率从92.8%降至69.4%;为满足天然气液化率在90%以上,原料气、氮气制冷剂及混合制冷剂物流分配的临界STD值分别为8.3、2.8、4.5(液相),混合制冷剂倾斜工况临界STD值为1.5(液相),对应倾斜角度为1.6°。  相似文献   

4.
制冷剂参数对混合制冷剂循环液化天然气流程性能的影响   总被引:2,自引:0,他引:2  
分析了高、低压、混合制冷剂的入口压力、温度、组分的摩尔分率对流程制冷剂流量、压缩机功耗、冷却水的冷却量及丙烷预冷量的影响,利用所编制的计算机软件计算了这些参数对流程性能的影响,计算结果表明,制冷剂流量受高压制冷剂的压力和温度以及混合制冷剂中甲烷的摩尔分率影响较大;压缩机功耗受高压制冷剂的温度、低压制冷剂的压力及混合制冷剂中甲烷的摩尔分率影响较大;冷却水的消耗量受低压制冷剂的压力及混合制冷剂中甲烷的  相似文献   

5.
丙烷预冷混合制冷剂液化流程中原料气与制冷剂匹配研究   总被引:3,自引:1,他引:2  
针对高、中、低3种压力和2种成分组合而成的6种原料天然气,利用Aspen HYSYS流程模拟软件对丙烷预冷混合制冷剂液化流程(PPMR)进行了模拟研究,考虑了混合制冷剂高低压变化、混合制冷剂组分改变,从中获得了制冷剂组分与原料天然气Cp-T热力性质以及混合制冷剂高低压之间的相互关系.混合制冷剂组分的选择依赖于原料天然气Cp-T热力性质,而混合制冷剂高低压会影响制冷剂组分和流量.6种原料天然气在不同混合制冷剂高低压下的PPMR流程比功耗的比较结果表明:原料天然气的Cp-T性质是决定整个PPMR流程的功耗高低的关键因素,而混合制冷剂组分和高低压对系统功耗影响较弱.对于某一固定原料气,混合制冷剂的组分和高低压应当根据原料天然气进行合理选取以避免不必要的能耗增加.  相似文献   

6.
天然气液化技术的研究   总被引:1,自引:0,他引:1  
针对青海天然气甲烷质量分数高的特点,选用带丙烷预冷的混合制冷剂循环,并基于LKP状态方程,在对各单元设备进行分析计算的基础上,对天然气液化全流程进行了热力计算.结果表明:液化率达0.823,单位LNG能耗为1.863kW·h/kg.该流程在西部天然气液化中可优先考虑.  相似文献   

7.
天然气膨胀预冷混合制冷剂液化流程操作条件优化   总被引:5,自引:0,他引:5  
为获得液化流程最优性能,确定液化流程能耗水平,探究将其应用于城市天然气调压站调峰型液化天然气装置的可行性,对天然气膨胀预冷混合制冷剂(NGE-MR)天然气液化流程的操作条件进行了优化。建立了NGE-MR液化流程模拟及优化模型,分析了混合制冷剂组成、混合制冷剂循环高压压力等主要操作条件对流程性能的影响,在此基础上以比功耗最低为优化目标,采用定压比优化方法,对NGE-MR液化流程的操作条件进行了优化。结果表明:3种压比(10、9、8)下NGEMR天然气液化流程的最优混合制冷剂组成基本相同,各组分摩尔分数分别为2%(N2)、32%(CH4)、60%(C2H6)、6%(C3H8),最优混合制冷剂组成与压比相关性不大;NGE-MR液化流程的最优比功耗随压比的降低而逐渐降低,但幅度很小,基本维持在0.225~0.230kW·h/kg,较C3-MR及级联式天然气液化流程分别降低23.9%和34.4%。NGE-MR液化流程节能优势明显,适用于城市天然气调压站的调峰型LNG装置,可高效节能地生产LNG并用于城市天然气调峰。  相似文献   

8.
船用BOG再液化系统是处理LNG船舶中蒸发气体的最常见方法。基于逆布雷顿循环的再液化系统,由于其紧凑性、简单性和安全性而成为再液化过程的首选。通过工艺模拟软件对BOG再液化工艺进行建模,研究制冷剂流量、制冷剂压缩机的出口压力对于再液化系统的功耗影响,并确定了不同出口压力下制冷剂的最小流量。此外,分析海水温度对于再液化系统的影响,结果表明,海水温度每升高1℃,系统功耗增加9 kW。  相似文献   

9.
针对高甲烷含量天然气在实际发动机中燃烧温度过高、NOx排放过高的问题,利用定容燃烧弹实验和Chemkin软件模拟计算相结合的方法,对其预混层流燃烧特性进行研究,分析了不同稀释比和稀释气种类(N2和CO2)对混合气的层流火焰速度、NOx摩尔分数、燃烧压力和燃烧期等燃烧特性参数的影响。研究表明,层流火焰速度、质量燃烧率和热释放率均随稀释比的增加而减小,稀释气添加导致火焰温度下降,从而降低了NOx摩尔分数。Markstein长度和火焰厚度都随稀释比的增加而增加,火焰流动不稳定性得到抑制。添加稀释气导致燃烧压力峰值和压力升高率降低、燃烧期延长,与N2相比,CO2对混合气燃烧特性的稀释效果更加显著,从而为通过废气再循环技术路径降低高甲烷含量天然气发动机燃烧温度,控制NOx排放提供了理论指导。  相似文献   

10.
液化天然气的储存和应用是整个液化天然气产业链中一个十分重要的环节。液化天然气的温度在-160℃以下,储存条件比较严格,因此建造技术要求很高。文章论述了液化天然气储存技术以及液化天然气的实际应用。  相似文献   

11.
提出通过超声速喷管使气体在高速流动条件下急剧膨胀而产生的低温效应液化天然气。结合双三次曲线法、BWRS真实气体状态方程、圆弧加直线方法及边界层黏性修正进行Laval喷管的设计,对喷管内甲烷气体的流动及液化过程进行研究,并分析入口温度、压力及背压对甲烷气液化过程的影响。研究结果表明:气体在喷管内流动达到超声速并导致低压低温,促使气体液化;入口温度的降低或入口压力的升高能促进气体液化,但过低温度(低于170 K)将使气体进入固相区,同样,提高压力时,由于比热比增大,当压力增大到2.5 MPa时也将使气体进入固相区,阻碍气体的液化;随着背压的升高,激波将进入喷管内,减弱或破坏气体的液化过程。利用超声速旋流分离器液化天然气时,应尽可能地回收压力能并保证激波不进入喷管和旋流分离段内。  相似文献   

12.
混合制冷剂R134a/R600a与矿物油互溶性的实验研究   总被引:1,自引:0,他引:1  
对混合制冷剂R134a/R600a与矿物油组成的混合物,在气-液相平衡时的温度和压力进行了测量.在R600a的质量分数为8.7%~28.6%的范围内,对R134a/R600a组成的混合制冷剂与矿物油的互溶性进行了实验研究,得到了当矿物油与制冷剂完全溶解时,混合制冷剂/油的饱和温度-压力曲线.实验结果表明:矿物油在混合制冷剂中的溶解度只与它和R600a的质量比有关.随着矿物油与R600a质量比的增加,临界互溶温度逐渐上升;与无矿物油的混合制冷剂相比,矿物油与混合制冷剂互溶后,其饱和压力有所下降.  相似文献   

13.
1.天然气的性质天然气为无色、无味、无臭的气体,它的主要成份是甲烷,含量达90%以上,其余为乙烷、丙烷、丁烷等。天然气比空气轻,放泄漏后容易散发,比液化石油气安全。天然气在一100℃低温下经脱硫除杂质后液化,液化后的体积缩小到1/600。但,天然气和空气按一定比例混合后遇火会发生爆炸,故安全要求和其他气体燃料一样严格。天然气热值较高,约为37.3MJ/M3(8900大卡/M3)左右。因此,天然Kff一种优质、洁净的燃料。液化后的天然气称“液化天然气”,其英文名词为LIQUEFIEDNATURAI,GAS,国际上统称为LNG。LNG是…  相似文献   

14.
在美国阿巴拉契亚山脉下蕴藏着世界上最大的天然气田,至今尚未开发,其所蕴含的甲烷可以作为交通燃料。实际上在一些国家,用于各种交通工具的压缩天然气的主要成分就是甲烷。美国能源部非常希望甲烷能够在常温常压下储存在惰性介质中用作车辆燃料,为此,能源部对这种惰性材料的储存性能设定了180倍的体积比,换句话说,就是一立方的储存介质必须能够吸附180立方的甲烷,这一要求几乎相当于液化甲烷气的储存方式。  相似文献   

15.
开展天然气乙烷回收可提高油气田的经济效益。以西北油田顺北区块天然气为案例,基于HYSYS软件建立乙烷回收模拟仿真模型,分别研究进深冷装置关键参数(进深冷装置压力、温度),关键设备参数(低温分离器温度、膨胀机出口压力、膨胀机效率、脱甲烷塔顶压力)和关键节点参数(干气回流比、低温分离器气相分流比)等对乙烷收率和装置能耗的影响规律,结果表明脱甲烷塔顶压力和低温分离器温度是乙烷回收最敏感的影响因素,因此在生产操作控制上应尽量保持脱甲烷塔顶压力和低温分离器温度为定值,减少其波动;另外,可通过改变干气回流比和低温分离器气相分流比来调节乙烷的收率和装置能耗。基于这些关键参数对乙烷收率和能耗的影响分析,为天然气乙烷回收的参数控制和参数调节提供了依据。  相似文献   

16.
开展天然气乙烷回收可提高油气田的经济效益。以西北油田顺北区块天然气为案例,基于HYSYS软件建立乙烷回收模拟仿真模型,分别研究进深冷装置关键参数(进深冷装置压力、温度),关键设备参数(低温分离器温度、膨胀机出口压力、膨胀机效率、脱甲烷塔顶压力)和关键节点参数(干气回流比、低温分离器气相分流比)等对乙烷收率和装置能耗的影响规律,结果表明脱甲烷塔顶压力和低温分离器温度是乙烷回收最敏感的影响因素,因此在生产操作控制上应尽量保持脱甲烷塔顶压力和低温分离器温度为定值,减少其波动;另外,可通过改变干气回流比和低温分离器气相分流比来调节乙烷的收率和装置能耗。基于这些关键参数对乙烷收率和能耗的影响分析,为天然气乙烷回收的参数控制和参数调节提供了依据。  相似文献   

17.
王芳 《工程与建设》2021,35(2):211-212,216
本文简介了天然气调压器及其关键元件节流孔的工作原理,计算了不同压力、不同温度下天然气(甲烷)焦耳-汤姆逊系数和不同等级压力调压后天然气的温度降,结果表明:安徽地区冬季应增加对调压器维护保养的频次,气温更低的北方地区,必要时要在调压器前增设加热器.  相似文献   

18.
天然气水合物样品声纵波特性和温压影响测量   总被引:3,自引:0,他引:3  
介绍了低温实验室合成天然气水合物声纵波传播速度和衰减的测量,以及不同温度和压力条件对纯甲烷水合物样品纵波传播速度的影响.在0—15℃温度范围内测量了冰、四氢呋喃(tetrahydrofuran,THF)水合物、天然气水合物样品及它们与砂的混合物样品的声纵波速度和声波穿透后的幅度.当冰、THF水合物、天然气水合物的密度分别为898,895和475kg/m3时,纵波速度分别为3574,3428和2439m/s,衰减依次增大.天然气水合物与砂的混合物的纵波速度明显低于冰与砂和THF水合物与砂的混合物样品的速度,它们的声衰减都比较小.实验室合成的天然气水合物密度比较低,当密度为475kg/m3时,纵波速度为2439m/s;经过压实密度增加,纵波速度随之增加,而衰减逐步减小,当密度为890kg/m3时,速度为3259m/s.在温压影响实验中的两个样品均在同样的初始条件下生成,但水的转化率不一样.在9.6~38MPa的压力范围内,随着活塞压力和孔隙压力的增加,甲烷水合物样品纵波速度也随着增加,从3049m/s增加到3337m/s.不同温度下甲烷水合物样品纵波速度随温度的增加而减少,速度从3800m/s降到3546m/s,且在冰点附近变化很大.  相似文献   

19.
为了解决双燃料发动机的CH_4与NO_X排放的trade-off关系,利用实验和模拟结合的方法,研究了喷油压力和EGR率对柴油/天然气双燃料发动机的燃烧和排放的影响。结果表明,随着喷油压力的上升,甲烷的火焰传播速度增加,热效率(BTE)上升;汽缸壁和狭隙区域的甲烷由于低温未能燃烧,成为甲烷排放的主要来源。当EGR率上升时,BTE呈现出先上升后下降的趋势;在EGR率较小(0~10%)时,CO和CH_4排放对喷油压力不敏感,在大EGR率工况(30%~40%)下,提高喷油压力可明显降低CO和CH_4排放。因此,当喷油压力为120 MPa并且EGR率为20%时,柴油/天然气双燃料发动机可获得较高的热效率和较低的排放。  相似文献   

20.
在间歇式高温高压反应釜中,以水、四氢萘、水-四氢萘混合溶剂为反应介质,研究了甘蔗渣直接液化制备生物油的工艺。调查了蔗渣/溶剂的固液比、液化温度、水-四氢萘混合溶剂中四氢萘含量、碱预处理对蔗渣液化效率的影响。研究结果表明,在液化温度200~320℃范围内,单独使用水和四氢萘作为溶剂液化时最大转化率分别为68%和89%,最大液体产率分别为61%和70%,而且,水作为溶剂液化时,转化率随温度升高缓慢增加,而四氢萘液化时,在270~280℃转化率急剧地增加(增加了30%);当水-四氢萘混合溶剂中四氢萘含量大于50%时,蔗渣转化率均高于单独使用水或四氢萘液化,预示着水和四氢萘之间的协同作用;使用Na OH预处理蔗渣,大幅提高了以水和水-四氢萘混合溶剂为反应介质的转化率和液体产率。与蔗渣原料相比,液化产物显示了较低的氧含量(20.96%~27.24%)与较高的热值(27.65~30.82 MJ/kg),达到了对蔗渣脱氧和提高热值的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号