首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脱硫泵机械密封稳态温度场的有限元分析   总被引:1,自引:0,他引:1  
机械密封温度场研究是热应力分析的基础,是影响机械密封工作寿命与密封性能的主要因素。通过建立密封环有限元模型,提出机械密封动、静环轴对称问题的有限元分析与稳态温度场计算方法,得出了密封环温度分布规律。并对接触面的热流密度、模型与介质的对流换热系数以及热流分配系数等物理量进行了分析。结果显示,温度变化主要集中在靠近内径的接触面附近的局部区域,该区域变形较大,且不利于密封环的散热。  相似文献   

2.
3.
本文根据流体动压润滑原理,推导出了摩擦系数、膜厚与密封准数的关系式。并利用摩擦系数-密封准数、膜厚-密封准数关系对所试验的密封作了实际摩擦状态划分尝试。试验结果是当密封准数小于5×10~(-8)时为混合摩擦;当密封准数大于5×10~(-8)时为流体摩擦。  相似文献   

4.
用有限元法分析机械密封稳态温度场,根据假设条件创建有限元模型.利用ANSYS 8.0软件进行温度场计算分析,并用热-结构耦合法计算密封环的热应力.通过应力分析得到其最大值的位置及大小,计算结果表明,这与实际生产中所见热裂失效破坏是相吻合的,为机械密封环的设计及变形分析提供理论依据.  相似文献   

5.
为了揭示液黏传动摩擦副温度场分布规律,以矿用刮板输送机可控启动装置为研究对象,基于热传导原理建立了摩擦副三维瞬时热传导方程,采用摩擦功率法推导了热流密度数学模型,确定了摩擦副的对流换热系数,在ANSYS Workbench中建立了摩擦副温度场有限元模型,分别研究了不同接合压力和相对转速及整个软启动过程中摩擦副的温度场分布特性。结果表明:摩擦片和对偶片具有相似的温度场分布规律,均是沿内径至外径方向先上升后下降,温度最大值出现在接近摩擦副外径处;摩擦副温度随接合压力和相对转速的增大而升高;摩擦片每个菱形区域中心温度高于四周区域,容易形成热斑;整个软启动过程中摩擦副温度逐渐升高,在软启动刚结束时达到最大值,摩擦副接触表面高温区向中心靠近。温度场仿真结果为后续的摩擦副热—结构耦合分析打下了基础,提供了相关的理论依据。  相似文献   

6.
针对深海推进器用机械密封在工况周期波动下磨损失效现象,在机械密封PV试验机上进行拟实工况测试,建立不同材质摩擦副配对在工况周期波动和定工况下的对照性试验,测试摩擦副实时摩擦系数、形貌演变、表面磨损等数据。试验结果表明:工况周期波动下的SSiC-M106K摩擦系数振幅频率高于恒定工况,且表面粗糙度由0.026μm上升至1.08μm,产生的磨粒对M106K表面造成二次磨损;另一方面,在3种不同材质的摩擦副配对中,SSiC-WC在工况周期波动下的摩擦系数最小且始终稳定在0.012~0.027范围。经SEM电镜测试后发现:以SSiC为动环的SSiC-WC摩擦副磨损程度较小,未出现犁沟效应,而SSiC-M106K表面出现明显磨痕,这是由于在滑动接触过程中磨料在石墨表面转移而导致磨损加剧。因此,SSiC-WC的摩擦配副更适应工况周期波动的服役环境。  相似文献   

7.
热失效是混合动力汽车湿式离合器发生故障的主要原因之一。摩擦副滑摩过程中具有高度非线性,同时摩擦副温度场受到多个参数影响。为深入研究混合动力汽车离合器摩擦副温度场分布情况,通过搭建混合动力汽车离合器热结构耦合分析模型,对滑摩过程进行仿真计算。在此基础上,深入研究初始转速、接合油压、对偶钢片厚度和摩擦衬片材料等因素对摩擦副温度场的影响。  相似文献   

8.
螺旋槽上游泵送机械密封有限元数值计算   总被引:8,自引:0,他引:8  
研究了螺旋槽上游泵送机械密封的工作机理。分析了该密封端面间的液体运动规律并建立了用于计算机械密封端面内液体二元流动的雷诺方程,用有限元数值计算的方法得出了一定条件下螺旋槽上游泵送机械密封端面间液体的压力分布,开启力及上游泵送量等,计算结果表明,螺旋槽上游泵送机械密封端面液膜内的压力分布呈三维凸形曲面,该密封具有明显的流体动压效应,低压侧的流体向上游泵送到槽底直径处压力增至最大值。该密封稳定性较好,理论上能实现零泄漏。  相似文献   

9.
相似准则在机械密封摩擦磨损研究中的应用   总被引:1,自引:0,他引:1  
利用相似原理推导出与机械密封摩擦磨损过程有关的相似准则,提出简化准则关系式的方法。简化了的关系式可用于处理机械密封性能实验数据。实验研究证明,机械密封摩擦磨损过程中的部分非定性参数与一些无因次相似准则之间存在幂函数关系。  相似文献   

10.
针对制动摩擦副的特点,运用摩擦学的分析方法,分析以汽车制动摩擦副为代表的摩擦表面特性,进而得出对制动衬片的性能要求。  相似文献   

11.
深槽浅槽机械密封的对比分析   总被引:6,自引:0,他引:6  
通过对深槽和浅槽机械密封的端面开槽的结构,工作压力,转速对密封性能的影响进行了分析,使广大从事机械密封的工作人员对这类密封有较全面的了解,并对设计和选型有一定的帮助。  相似文献   

12.
根据大型空间机械臂制动时的安全需求,基于大型空间机械臂制动安全的数学模型,确定了制动器摩擦副的综合设计指标.以制动器力矩稳定性及寿命等为指标,计算了摩擦副的等效半径及喷涂厚度,设计了基于陶瓷材料的摩擦副.研制了陶瓷摩擦副制动器样机及实验台.通过对制动实验数据的分析,验证了摩擦副设计的正确性.结果表明,以大型空间机械臂制动安全指标推算制动器摩擦副综合设计指标,以此来进行制动器摩擦副设计是可行的.  相似文献   

13.
单端面机械密封摩擦系数的测定   总被引:2,自引:0,他引:2  
本文研究了单端面机械密封装置的端面摩擦扭矩测量方法。对主轴承摩擦扭矩、旋转体在介质中的搅拌扭矩和端面摩擦扭矩进行了测试。在测试中考察了由于介质压力的变化引起轴向力的改变,致使主轴承摩擦扭矩改变的情况,以介质的粘度变化引起搅拌扭矩的变化及其对端面摩擦扭矩的影响。采用两种方法测定的端面摩擦据矩其摩擦系数,给出了计算实例。两种计算结果有对比性,较为稳定,精确度高,故该方法可用于评价机械密封的摩擦性能。  相似文献   

14.
研究了螺旋槽上游泵送机械密封的工作机理 ,分析了该密封端面间的液体运动规律并建立了用于计算机械密封端面内液体二元流动的雷诺方程。用有限元数值计算的方法得出了一定条件下螺旋槽上游泵送机械密封端面间液体的压力分布、开启力及上游泵送量等。计算结果表明 ,螺旋槽上游泵送机械密封端面液膜内的压力分布呈三维凸形曲面 ,该密封具有明显的流体动压效应 ,低压侧的流体向上游泵送到槽底直径处压力增至最大值。该密封稳定性较好 ,理论上能实现零泄漏  相似文献   

15.
螺旋槽干式气体端面密封的刚度和泄漏量研究   总被引:2,自引:0,他引:2  
干式气体端面密封(DGS)是一种非接触式机械密封,适用于大多数气体密封场合,了解密封特性尤其是气膜刚度和泄漏量对正确设计密封非常重要。针对螺旋槽气体端面密封结构,用有限元法计算了密封端面的气膜压力分布及密封的气膜刚度和泄漏量等特性参数,分析了密封面的槽深比、螺旋角和槽长坝长比等两两变化时对密封特性的影响。研究表明,当槽深比取2.0~2.5,螺旋角取15°,槽长、坝长比取1.5~2.0,槽台宽比取1.0,槽数取12~18时,可在确保密封泄漏量低的同时具有较大气膜刚度。  相似文献   

16.
提出一种多绳螺旋摩擦衬垫,根据理论分析及力的推导计算,螺旋槽衬垫对钢丝绳的诱导摩擦系数μu是普通摩擦系数μ的2.4倍,这种新型摩擦衬垫对多绳摩擦提升绞车及运输设备上用的各种摩擦轮具有重要的意义。  相似文献   

17.
柱塞泵中柱塞摩擦副泄漏流量的分析   总被引:1,自引:0,他引:1  
考虑到柱塞密封长度的变化,对柱塞与缸孔间环形间隙流动流量公式进行修正,得出修正系数的计算公式,为柱塞泵(马达)容积效率的分析和计算提供了方便。  相似文献   

18.
机械密封在渣浆泵的应用研究   总被引:1,自引:0,他引:1  
机械密封摩擦副工作温度状况,不仅是影响机械密封使用寿命的关键因素,而且是选取合理机械密封型式的重要依据.在渣浆泵机械密封的改造过程中,影响机械密封摩擦副温度变化的主要因素及部分参数的计算方法,同时建立摩擦副温度场的数学模型,利用有限元法对动、静环摩擦副温度场的分布进行了模拟仿真,为渣浆泵的机械密封改造提供参考依据.结合对渣浆泵进行机械密封改造前后的实际使用情况,对改造效果进行了分析对比,结果表明对渣浆泵进行机械密封改造不仅可行,而且能够节能、减少污染.  相似文献   

19.
高速螺旋槽气体密封轴向微扰的有限元分析   总被引:11,自引:1,他引:11  
利用一种高阶形函数的有限元方法,分析了高速运转下的螺旋槽端面密封的轴向微扰,得到了气体密封关于轴向微扰的一些动态特性参数,如密封的动态刚度和阻尼。计算了密封的一些稳态特性参数如密封开启力,静态刚度和泄漏量。分析了这些稳态和动态参数关于压缩因数和频率因数的变化关系。  相似文献   

20.
本文研究了单端面机械密封装置的端面摩擦扭矩测量方法。对主轴承摩擦扭矩、旋转体在介质中的搅拌扭矩和端面摩擦扭矩进行了测试。在测试中考察了由于介质压力的变化引起轴向力的改变,致使主轴承摩擦扭矩改变的情况,以及介质的粘度变化引起搅拌扭矩的变化及其对端面摩擦扭矩的影响。采用两种方法测定的端面摩擦扭矩计算其摩擦系数,给出了计算实例。两种计算结果有对比性,较为稳定,精确度高,故该方法可用于评价机械密封的摩擦性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号