首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
大孔GAM珠状聚合物固定化青霉素酰化酶催化性能的研究   总被引:4,自引:1,他引:4  
应用反相悬浮技术合成了大孔甲基丙烯酸缩水甘油酯(GMA)-丙烯酰胺(AM)-N,N′-亚甲基双丙烯酰胺(MBAA)珠状三元聚合物GAM,并用于制备固定化青霉素酰化酶.在37℃时,用固定化酶PA/GAM(粒径0.10~0.13 mm)水解青霉素G制备6-氨基青霉烷酸(6-APA),其表观活性为569 IU/g,表观米氏常数k′m为1.7×10-2mol/L,最大反应速度vmax为6.1×10-4mol/min,水解反应最适温度为50℃,最适pH值为8.0.固定化酶在pH值为4.0~9.0,且温度低于40℃时活性稳定,经20次间歇操作使用后,催化活性没有明显衰减,有良好的应用前景.  相似文献   

2.
功能基化聚丙烯酸甲酯固定青霉素G酰化酶的性质   总被引:1,自引:1,他引:0  
采用肽键法将青霉素G酰化酶固定在功能化的聚丙烯酸甲酯上得固定化酶 ,其最适pH为8.2,最适反应温度为70℃ ,该固定化酶在pH6~10和40℃以下非常稳定 ,表观米氏常数为1.48×10-2mol/L,最大反应速度为5.09mmol/s.33℃下水解质量分数为5 %的青霉素G,使用63次,酶活力保留79.4 %.在4℃的湿润状态下贮藏25d,酶活力保留97.6 %.  相似文献   

3.
聚甲基丙烯酸缩水甘油酯固定化青霉素酰化酶性质的研究   总被引:1,自引:0,他引:1  
应用反相悬浮技术合成了珠状甲基丙烯酸缩水甘油酯 - N ,N′-亚甲基双 (丙烯酰胺 )共聚物 ,并将巨大芽孢杆菌 ( Bacillus megaterium)青霉素酰化酶共价偶联到甲基丙烯酸缩水甘油酯共聚物载体上 ,制成固定化青霉素酰化酶 ,其表观活性为 3 71 U/g(干重 ) ,水解青霉素 G钾盐的最适温度为 47°C,最适 p H为 8.5 ,在 p H4.5~ 9.0 ,温度 40°C以下时酶的活性稳定 ,表观米氏常数 Km为 1 .3 3× 1 0 -2 mol/L ,最大反应速度 vmax为 1 .2 7× 1 0 -5mol/min,固定化酶在 4°C冰箱保存 3 5 d,再水解 w=0 .0 2的青霉素 G钾盐溶液 ,重复使用 3 0次 ,保留酶活性 88.1 %。  相似文献   

4.
粪产碱杆菌来源的青霉素G酰化酶通过共价结合在环氧型载体EupergitC上,通过对酶质量浓度、固定化反应时间、pH 值以及反应温度等条件的考察,确定了最优固定化条件:375mg比活力5000U/g的重组粪产碱杆菌青霉素G酰化酶蛋白对应1g载体,最适pH8.0,反应温度30 ℃.反应120h后制得固定化青霉素G酰化酶活力达到220U/g,固定化酶效率为10.7%.该固定化酶可在含饱和乙酸丁酯磷酸缓冲液中彻底水解青霉素G钾盐.经过15批连续水解反应,固定化酶仍保持95%的活力,展现出良好的稳定性.  相似文献   

5.
研究了青霉素G酰化酶(PGA)在含环氧活性基的多孔高聚物载体上的固定化及修饰,优化固定化条件为1 mol/L,pH 8.0的磷酸钾缓冲体系,每克载体(湿重)投酶量为500~550 U,30℃下150 r/min固定化36~48 h,得到的固定化酶表观酶活为每克载体(湿重)177 U,表观酶活回收率35%。固定化酶经巯基乙醇修饰后提高了热稳定性。固定化酶水解青霉素G的最适pH为9.0,最适温度为47℃,在pH 4~9,40℃以下稳定。固定化酶的各项性能均优于游离酶。  相似文献   

6.
制备了含钴MCM-48和MCM-41的介孔分子筛,用作酶生物催化剂固定化的载体.采用XRD、低温N2吸附及FT-IR等方法研究了介孔载体的结构特征、表面酸性和对青霉素酰化酶(Penicillin G Acylase,PGA)的固定化作用.结果表明,Co-MCM-48与Co-MCM-41介孔分子筛表面存在着弱酸性高浓度的自由羟基,为酶的固定化提供了功能性基团和适宜的微环境.固定化酶PGA/Co-MCM-48水解青霉素G的表现活性为1682IU/g,约是PGA/Co-MCM-41水解青霉素G表现活性的2.4倍.经6次连续操作使用,PGA/Co-MCM-48的水解活性降至1375IU/g,保持其初始活性的81%,而PGA/Co-MCM-41保持其初始活性的42%.Co-MCM-48固定化青霉素酰化酶的活性和操作稳定性显著好于Co-MCM-41固定化酶。  相似文献   

7.
酶的固定化是提高酶的稳定及降低使用成本的重要途径.通过制备聚乙烯醇(PVA)-海藻酸钠(SA)复合载体,对共固定化葡萄糖氧化酶(GOD)和过氧化氢酶(CAT)的条件进行了研究,优化了固定化酶制备工艺,研究了固定化酶性质.得出制备固定化酶最佳条件为:载体比例 PVA∶SA=9.0∶1.5,加酶量10 mg/mL,酶活之比CAT∶GOD=10∶1.固定化酶的最适反应温度为45℃,比游离酶提高了5℃,最适反应pH 没有发生变化,连续使用6次酶活保留60%.研究结果有一定的应用潜力.  相似文献   

8.
层状材料水滑石固定青霉素酰化酶的研究   总被引:1,自引:1,他引:1  
以层状材料水滑石(LDH)为载体,采用不同酸性氨基酸插层,通过直接吸附和戊二醛交联的方法进行青霉素酰化酶(PGA)的固定.考察了各个因素对固定化酶酶活性的影响,优化了反应条件.制得的固定化酶的表观酶活性达9.67×10-6mol/s,酶活性回收率56.6%.对固定化酶的操作稳定性作了初步探讨.  相似文献   

9.
陶瓷-壳聚糖复合材料固定真菌漆酶   总被引:2,自引:0,他引:2  
以陶瓷为第一载体,壳聚糖为二次载体,戊二醛为交联剂,采用共价结合和吸附联用法制备固定化漆酶。考察了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。结果表明,漆酶固定化的适宜条件为0.15g壳聚糖-陶瓷复合载体,加入3mL 1.25?mg/mL漆酶磷酸盐缓冲溶液(0.1mol/L, pH4.0),在4℃固定24h。酶的固定化效率是51.0%,固定化酶的酶活是55.87U/g,最适pH为3.0,最适温度分别为25℃和50℃。该固定化酶具有良好的贮存和操作稳定性。在pH3.0,温度25℃时,固定化酶对2,2-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐的表观米氏常数为66.64μmol/L。  相似文献   

10.
以Cerrena sp. HYB07菌株所产漆酶为研究对象,制备磁性Fe_3O_4-壳聚糖固定漆酶.磁性壳聚糖微球固定化漆酶制备的最优条件为:磁性Fe_3O_4纳米颗粒0.4μg·mL~(-1)、戊二醛质量浓度4 mg·mL~(-1)、交联时间12 h、给酶量160 U·mL~(-1)、固定化时间8 h.在此条件下,漆酶固定化率为78.03%,固定化漆酶活力为97.19 U·g~(-1).酶学性质研究表明,固定化漆酶的最适反应pH值为3.0,最适反应温度为45℃.与游离酶相比,固定化漆酶的热稳定性有所提高.固定化漆酶用于蒽醌染料活性亮蓝脱色,具有良好的重复利用性,不仅染料脱色率优于游离酶,且在汞离子存在下也效果显著.  相似文献   

11.
交联海藻酸钙凝胶固定化酵母醇脱氢酶研究   总被引:2,自引:0,他引:2  
对用海藻酸钙包埋、戊二醛交联法固定酵母醇脱氧酶催化苯乙酮酸合成(R)-扁桃酸的过程进行研究,比较游离酶与固定化酶的酶学性质.实验结果表明:固定化酶的热稳定性显著提高,游离酶在70℃时酶蛋白变性失去活力,而固定化酶在65℃保温1 h的能保持64%的酶活力,在70℃时酶活力仍町保留48.6%;固定化酶的最适温度由30℃升至40℃,最适反应pH值由6.8下降为5.8;固定化酶保留了62.72%的游离酶活性, 固定化酶的表观米氏常数和最大反应速率分别为37.33 mmol/L和358.42 nmol/min.该固定化酶具有良好的储存稳定性和操作稳定性.  相似文献   

12.
本文介绍一种测定固定化酶催化反应动力学参数的新方法。在纤维间扩散阻力和外扩散阻力存在下,改变底物输送流速,测定纤维状固定化酶的一系列对应反应初速度;用双倒数图和Dixon图分别求各种流速下的表观米氏常数(K_m~(?))和表观产物抑制常数,再用所求得的各种表观动力学参数与对应的底物输入酶柱的线速度倒数的线性关系式,两次图解求得本征动力学参数。采用这一方法求得纤维状固定化青霉素酰化酶催化重排酸水解的本征米氏常数(K_m)、产物7-ADCA和苯乙酸抑制常数的本征值(K_p,K_q)分别为6.9,16.8和94.4mmol/L。  相似文献   

13.
为了能对固定化青霉素G酰化酶进行X射线微区分析 ,筛选了能捕捉酶活的合适的底物与捕捉剂的体系 ,青霉素G钠作为底物 ,FeCl3 作为捕捉剂 ,底物经固定化青霉素G酰化酶水解产生苯乙酸 ,后者与捕捉剂反应生成沉淀 ,可以确定固定化青霉素G酰化酶的催化活性部位 ;还对捕捉剂与底物、固定化青霉素G酰化酶与载体以及载体与底物之间的相互作用进行了研究 ,找到了可用于对固定化青霉素G酰化酶活性进行X射线微区定位的捕捉剂.  相似文献   

14.
采用循环伏安法制备了铁氰化钴/铜(Cu/CoHCF)复合膜化学修饰电极,研究了该修饰电极的电化学性质及电催化活性。结果表明,复合物不是铁氰化钴(CoHCF)与铁氰化铜(CuHCF)的简单混合物,而是钴、铜共沉积形成的多核铁氰化物。该电极对肼具有良好的电催化活性。在优化条件下,安培法检测肼的线性范围为4.6×10-6~4.4×10-2 mol.L-1,检测限(3Sb,n=11)为8.0×10-7 mol.L-1,灵敏度为143.1"A.(mmol.L-1)-1。该法已用于模拟水样中肼含量测定。  相似文献   

15.
采用响应面分析法,对固定化灵芝漆酶(Lac)降解氨基黑10B脱色反应体系进行优化分析.首先采用单因素实验分别获取反应体系中6个影响脱色率因素的最佳值;然后通过Plackett-Burman设计法对选取的6个影响因素进行筛选,确定主要影响因素为ABTS浓度和Lac酶量;再用最陡爬坡实验逼近ABTS浓度和Lac酶量2个主要因素的最大响应区域,并通过中心组合设计和响应面分析,确定2个主要影响因素的最佳值.优化后的氨基黑10B脱色200μL反应体系为:pH值4.6、温度30℃、ABTS浓度0.07mmol·L-1、硫酸铜浓度1.75mmol·L-1、Lac酶量6.23mg、初始底物浓度100mg·L-1.该反应体系氨基黑10B脱色率可达60.02%,比单因素法脱色率提高了44.46%.  相似文献   

16.
利用复凝聚法制备了粒径约3.0 mm的羧甲基纤维素-壳聚糖胶囊,并用其固定化蔗糖酶.羧甲基纤维素-壳聚糖胶囊固定化蔗糖酶的最佳制备工艺条件是:蔗糖酶溶于质量分数为0.02的壳聚糖溶液,滴入质量分数为0.015羧甲基纤维素溶液中并在其中固化24h.固定化酶耐酸性好,在pH 3.6~5.0范围内其活性基本保持不变,而游离酶...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号