首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
论数学问题解决的系统思维方法策略   总被引:1,自引:0,他引:1  
从系统论观点出发,对数学问题、数学问题解决进行了讨论,分析了数学问题解决中的系统基本思想,进一步阐述了解题中常见的整体思维方法、有序思维方法、层次思维方法、动态思维方法、目的思维方法、最优思维方法等。  相似文献   

12.
主要研究混合均衡问题的解的存在性.众所周知,混合均衡问题包含许多均衡问题、变分不等式问题、最优化问题和互补问题作为特例.因此,本文结果是许多相关结果的推广和改进.  相似文献   

13.
介绍了C&P(切割与装箱)问题的基本模型和主要研究方向,提出了针对大批量多规格的货物装载(装船)的数学模型和求得满意解的混合遗传算法,设计并开发了解决实际问题的基于信息技术的优化系统.所解决的钢铁产品船舶装载问题对同领域的其他装载优化问题有借鉴意义.  相似文献   

14.
对物理问题的表征和物理问题图式形成是实现主体参与问题解决过程的两种主要方式 ,也是影响物理问题解决能力的两大关键要素  相似文献   

15.
本文综合介绍线性非线性奇异系数方程的数值方法在30年来,特别是近十几年来的研究概况.给出这些问题研究的丰富成果和需要进一步解决的问题  相似文献   

16.
本文考虑了二元解析函数的一类Riemann 边值问题,将Riemann 边值问题转变成Riemann-Hilbert 边值问题,给出了问题的可解性及其解的表示式.  相似文献   

17.
鞍点问题广泛出现在众多的工程研究领域,如流体力学、电磁学、最优化问题、最小二乘问题、椭圆偏微分方程问题等.以SOR类方法为基础,结合HS分裂思想,将经典鞍点问题的求解方法推广到特殊鞍点问题的求解上.给出一种具有新型分裂迭代格式的MSOR-Like方法,用以求解一类含有非对称块的鞍点系统,给出了相应的收敛性分析以及最优松弛参数选取方法.数值算例验证了对于不同的预优矩阵,MSORLike方法只有收敛速度的分别,没有收敛性能的影响,且在相同计算精度下,该方法解决特殊鞍点问题的迭代效果优于常规方法解决经典鞍点问题.  相似文献   

18.
数学问题是指以数学为内容,或者虽不以数学为内容,但必须运用数学概念、理论或方法才能解决的问题。问题解决中的"问题"主要是指那些非常规的,或者条件不充分、结论不确定的开放性、探究性问题。问题解决教学要通过创设情境来激发学生的求知欲望,使学生亲身体验分析问题、解决问题的全过程,从而培养他们使用数学的意识、探索精神和实际操作能力。  相似文献   

19.
拟平衡问题解的存在性   总被引:4,自引:1,他引:4  
研究一类拟平衡问题,该问题包含几类变分和拟变分不等式问题,拟补问题和Nash平衡问题作为特殊情形.对拟平衡问题在拓扑矢量空间内证明了解的几个存在定理.  相似文献   

20.
当弹性模量接任意函数形式连续变化时,将各向同性、正交异性功能梯度材料平面断裂问题的Ⅰ型、Ⅱ型、Ⅰ+Ⅱ型裂纹的探讨归结为求解两类(6个)偏微分方程的边值问题。在此基础上进一步考虑当弹性模量按指数函数形式或按幂函数形式连续变化时,相应的Ⅰ型、Ⅱ型、Ⅰ+Ⅱ型裂纹的探讨可归结为求解另4类(12个)较为简单的偏微分方程边值问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号