首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 59 毫秒
1.
利用矩阵特征值包含域定理中系数的不同选择,以及非奇异M矩阵A的逆矩阵A-1的元素估计式的不同选择,得到了q(AA-1),q(BA-1)新的一些下界.这些估计式使得估计q(AA-1),q(BA-1)下界时的选择更加丰富.  相似文献   

2.
利用非奇异M矩阵A的逆矩阵A-1元素单调的上下界序列和改进的圆盘定理,得到了M矩阵B与A-1的Hadamard积以及最小特征值下界单调递减的新估计式.  相似文献   

3.
给出非奇异M-矩阵A的逆矩阵A-1与M-矩阵B的Hadamard积小A-1的最小特征值下界的一些新估计式。这些估计式只依赖于矩阵A与曰的元素,易于计算。例证表明,所得估计式在一定条件下比现有估计式更为精确。  相似文献   

4.
给出了非奇异M一矩阵的逆矩阵和M一矩阵的Hadamard积的最小特征值下界新的估计式,改进了已有的相关结果。这些估计式都只依赖于矩阵的元素,易于计算。  相似文献   

5.
借助非奇异M矩阵A的逆矩阵A-1的元素的一些估计式和组合优化的思想,给出非奇异M矩阵B与A-1的Hadamard积B。A-1的最小特征值下界的一些新估计式。这些估计式比现有的仅依赖于矩阵元素的估计式更加精确。  相似文献   

6.
利用相似矩阵的性质和矩阵特征值包含域定理,给出了系数可调节的新的矩阵特征值包含域定理,当系数选择为非奇异M矩阵A的逆矩阵A-1的元素估计式的上界时得到了q(A·A-1),q(B·A-1)新的下界.  相似文献   

7.
设A和B是非奇异M矩阵,给出B和A-1的Hadamard积的最小特征值的新界值估计,设矩阵A=(aij)和B=(bij)都为非奇异M矩阵,A-1=(βij),则有τ(BA-1)≥min i≠j12{βiibii+βjjbjj-[(βiibii-βjjbjj)2+4sisjβiiβjj(bii-τ(B))(bjj-τ(B))]12}。估计式仅依赖矩阵的元素,易于计算。数值例子表明所得新估计式改进了现有的一些结果。  相似文献   

8.
研究非奇异M-矩阵A与其逆A~(-1)的Hadamrad积的最小特征值τ(AoA~(-1))的估计问题.首先利用矩阵A的元素给出A~(-1)各元素的上界序列.接着利用这些上界序列和Gerschgorin定理、Brauer定理分别给出τ(AoA~(-1))的单调递增的收敛的下界序列.最后通过数值算例对理论结果进行验证,数值算例显示所得下界序列比现有结果精确,且在某些情况下能达到真值.  相似文献   

9.
利用不可约非负矩阵A的Hadamard幂,矩阵特征值存在域定理,以及非奇异M矩阵B的若干性质,首先给出了不可约非负矩阵AB-1的谱半径的上界;其次,当A的每个元素都为1时,给出了τ(B)的一些新下界.数值例子说明这些新界一定程度上提高了已有文献中的结果.  相似文献   

10.
李华 《河南科学》2012,30(6):680-683
利用著名的Gersgorin圆盘定理,给出非负矩阵的Hadamard积的谱半径上界的一个新估计式和非奇异M矩阵的Fan积的最小特征值的下界估计,易于计算.并通过具体例子加以比较,表明所得的估计结果在一定条件下更为精确.  相似文献   

11.
给出了非奇异M-矩阵的逆矩阵和M-矩阵的Hadamard积的最小特征值下界新的估计式, 这些估计式都只依赖于矩阵的元素,易于计算,改进了已有的结果。  相似文献   

12.
关于M矩阵及其逆矩阵的Hadamard积A·A-1,给出A·A-1的最小特征值的新下界,新下界改善了Fiedler和Markham的猜想,也改进了其他已有的结果。  相似文献   

13.
对M-矩阵与其逆的Hadamard积特征值的下界进行了研究.首先给出了A°A-1最小特征值的两个新下界.其次证明了所得的结果比现有的某些结果更加接近于A·A-1的最小特征值.最后用数值算例验证了所得结果是有效的.  相似文献   

14.
 分别给出了非奇异M-矩阵的逆矩阵和非奇异M-矩阵的Hadamard积与非奇异M-矩阵Fan积的最小特征值下界新的估计式;同时给出了非负矩阵Hadamard积的谱半径上界新的估计式;这些估计式都只依赖于矩阵的元素,易于计算.算例表明,这些估计式在一定条件下改进了现有结果.  相似文献   

15.
利用非奇异M矩阵A的逆矩阵A-1的元素的下界估计式,给出了A与A-1的Hadamard积AA-1的最小特征值下界的一些新估计式。这些估计式仅依赖于矩阵A的元素,并且在某些情况下可得到比现有估计式更精确的界。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号