共查询到20条相似文献,搜索用时 15 毫秒
1.
《江汉大学学报(自然科学版)》2016,(1):18-21
对于任意正整数n,S(n),SL(n),φ2(n)分别为Smarandache函数,Smarandache LCM函数和广义Euler函数。利用S(n),SL(n),φ2(n)的基本性质并结合初等方法研究了方程S(SL(n))=φ2(n)的可解性,给出了该方程的所有正整数解为n=20,24,25,32,36,50,54。 相似文献
2.
利用φ_2(n),φ(n),S(n)的基本性质并结合初等数论等方法以及C++程序研究了方程φ_2(n)=S(n~8)的可解性,证明了该方程仅有正整数解n=189,243,343,375,378,486,500,686,750,867,1 156,1 734。 相似文献
3.
刘艳艳 《青岛化工学院学报(自然科学版)》2014,(3):326-329
对于正整数a,设φ(a)和S(a)分别是a的Euler函数和Smarandache函数,k是给定的正整数。本研究运用初等数学方法给出了方程φ(n)=S(nk)有适合n>1的正整数解n的充要条件。由此推知:如果k=[(pα-1-1)/α],其中p为奇素数,α是大于1的正整数,[(pα-1-1)/α]是(pα-1-1)/α的整数部分,则该方程有正整数解n=pαm适合n>1,其中m∈{1,2}。 相似文献
4.
对于正整数n,设Ф(n)和s(n)分别是Euler函数和Smarandache函数,证明了:方程Ф(n)=s(n^7)仅有整数解n=1,64,72,80. 相似文献
5.
利用初等数论、组合分析以及C++程序对方程φ(n)=S(n^10)进行讨论,证明了该方程仅有正整数解n=1,这里对于任意正整数n,φ(n)和S(n)分别表示关于n的Euler函数和Smaran-dache函数。 相似文献
6.
对于任意正整数n,数论函数D(n)定义为最小的正整数m使得n|d(1)d(2)…d(m),其中d(n)为除数函数。利用初等方法研究方程2φ(n)=D(n)的可解性,并获得了该方程的所有正整数解。 相似文献
7.
对于任意正整数n,设φ(n)和s(n)分别是关于n的Euler函数和Smarandache函数。利用初等方法,得到了方程φ(n)=s(nk)当k=7时的所有正整数解。 相似文献
8.
9.
10.
11.
设n,e>1均为正整数,利用初等的方法和技巧,以及Smarandache LCM函数和广义Euler函数的基本性质,讨论e∈{2,3,4,6}或e|φ(n)时,数论函数方程SL(n)=φe(n)的可解性,并给出该方程全部的正整数解. 相似文献
12.
乐茂华 《佛山科学技术学院学报(自然科学版)》2004,22(4):1-2
对于正整数n,设φ(n)和S(n)分别是n的Euler函数和Smarandache函数。本文解决了有关φ(n)和.S(n)的一个方程问题。 相似文献
13.
利用初等数论的方法和数论函数的性质研究了数论函数方程tφ2(n(n+1))=S(SL(n17))的可解性问题,其中t∈Z+(Z+是正整数集),φ2(n)为广义Euler函数,SL(n)为Smarandache LCM函数,S(n)为Smarandache函数,得到如下结果:方程tφ2(n(n+1))=S(SL(n17))只在t=1,6,9,18,20时有正整数解,并给出了相应的正整数解。该计算方法有助于解决同类型方程的可解性问题。 相似文献
14.
讨论了方程φ(φ(n))=2~(ω(n))3~(ω(n))的可解问题,利用初等方法给出了当n为奇数时该方程的奇数解,确定了该方程共有5个奇数解,其中ω(n)为正整数n的不同质因数的个数. 相似文献
15.
张四保 《北华大学学报(自然科学版)》2019,20(1)
令φ(n)为Euler函数,φ_e(n)为广义Euler函数.讨论了Euler函数φ(n)与广义Euler函数φ_2(n)混合的两个方程φ_2(φ(m-φ_2(m)))=2与φ(φ_2(m-φ2(m)))=2的正整数解,利用分类讨论的方式及初等方法,分别得到了这两个方程各自的所有正整数解. 相似文献
16.
17.
令φ_e(n)为广义Euler函数,S(n)为Smarandache函数,其中e为正整数。探讨包含广义Euler函数φ_3(n)和Smarandache函数S(n)的方程φ_3(n)=S(n~8)的可解性问题,利用这2个数论函数的有关性质,给出了这一方程在φ_3(n)=3~(-1)φ(n)条件下无正整数解的结论。 相似文献
18.
陈荣基 《华南师范大学学报(自然科学版)》2001,(3):63-64
对于正整数n,设σ(n)、(?)(n)分别是n的约数和函数和Euler函数.本文证明了:当n是幂数 时,必有σ((?)(n))>6n/π2. 相似文献
19.
20.
设t∈N,n∈Z+,其中N和Z+分别是所有非负整数集合和所有正整数集合,利用欧拉函数φ(n)、广义欧拉函数φ2(n)、Smarandache LCM函数SL(n)和Smarandache函数S(n)的性质以及初等数论的方法,得到了方程tφ(n)+φ2(n)=S(SL(n13))只在t=0、1、2、3、4、5、7、10、13、15时有正整数解n及方程tφ(n)+φ2(n)=S(SL(n18))只在t=0、1、3、6、7、9、14、18、19时有正整数解n,并给出了这两个方程的所有正整数解n。 相似文献