首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic relationships of human populations have been studied by comparing gene frequency data for protein and blood-group loci of different populations. DNA analysis now promises to be more informative since not only do the DNA coding sequences have more variation than their corresponding proteins but, in addition, noncoding DNA sequences display more extensive polymorphism. We have now studied the frequency of a group of closely linked nuclear DNA polymorphisms (haplotypes) in the beta-globin gene cluster of normal (beta A) chromosomes of individuals from eight diverse populations. We have found that all non-African populations share a limited number of common haplotypes whereas Africans have predominantly a different haplotype not found in other populations. Genetic distance analysis based on these nuclear DNA polymorphisms indicates a major division of human populations into an African and a Eurasian group.  相似文献   

2.
Genes mirror geography within Europe   总被引:1,自引:0,他引:1  
Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual's DNA can be used to infer their geographic origin with surprising accuracy-often to within a few hundred kilometres.  相似文献   

3.
A haplotype map of the human genome   总被引:2,自引:0,他引:2  
Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a public database of common variation in the human genome: more than one million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution.  相似文献   

4.
Genetic variation is generally believed to be important in studying endangered species’ adaptive potential.Early studies assessed genetic diversity using nearly neutral markers,such as microsatellite loci and mitochondrial DNA(mtDNA),which are very informative for phylogenetic and phylogeographic reconstructions.However,the variation at these loci cannot provide direct information on selective processes involving the interaction of individuals with their environment,or on the capability to resist continuously evolving pathogens and parasites.The importance of genetic diversity at informative adaptive markers,such as major histocompatibility complex(MHC) genes,is increasingly being realized,especially in endangered,isolated species.Small population size and isolation make the golden snub-nosed monkey(Rhinopithecus roxellana) particularly susceptible to genetic variation losses through inbreeding and restricted gene flow.In this study,we compared the genetic variation and population structure of microsatellites,mtDNA,and the most relevant adaptive region of the MHC II-DRB genes in the golden snub-nosed monkey.We examined three Chinese R.roxellana populations and found the same variation patterns in all gene regions,with the population from Shennongjia population,Hubei Province,showing the lowest polymorphism among three populations.Genetic drift that outweighed balancing selection and the founder effect in these populations may explain the similar genetic variation pattern found in these neutral and adaptive genes.  相似文献   

5.
Humpback whales (Megaptera novaeangliae) migrate nearly 10,000 km each year between summer feeding grounds in temperate or near-polar waters and winter breeding grounds in shallow tropical waters. Observations of marked individuals suggest that major oceanic populations of humpback whales are divided into a number of distinct seasonal subpopulations which are not separated by obvious geographic barriers. To test whether these observed patterns of distribution and migration are reflected in the genetic structure of populations, we looked for variation in the mitochondrial DNA of 84 individual humpback whales on different feeding and wintering grounds of the North Pacific and western North Atlantic oceans. On the basis of restriction-fragment analysis, we now report a marked segregation of mitochondrial DNA haplotypes among subpopulations as well as between the two oceans. We interpret this segregation to be the consequence of maternally directed fidelity to migratory destinations.  相似文献   

6.
Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P?value 相似文献   

7.
ApreliminarystudyonS.asotuslinnaeusandS.soldatovimeridionalisChenbyDNAfingerPrinting¥LiuYong;HongXijun(DepartmentofLifeScienc...  相似文献   

8.
Sika deer (Cervus nippon) is a cervid endemic to mainland and insular Asia and endangered. We analyzed variation in the mitochondrial DNA (mtDNA) control region for four subspecies to understand the genetic diversity, population structure and evolutionary history in China. 335 bp were sequenced and eight haplotypes were identified based on 25 variable sites among the populations. Sika deer in China showed lower genetic diversity, sug- gesting a small effective population size due to habitat fragmentation, a low number of founder individuals, or the narrow breeding program. AMOVA analysis indicated that there was significant genetic subdivision among the four populations, but no correlation between the genetic and geographic distance. PhyIogenetic analyses also revealed that Chinese sika deer may be divided into three genetic clades, but the genetic structure among Chinese populations was inconsistent with subspecies designations and present geographic distribution. Including the sequence data of Japanese sika deer, the results indicated that Chinese populations were more closely related to Southern Japanese populations than to the Northern Japanese one, and the Taiwan population was closer to populations of Northeastern China and Sichuan than to those of Southern China.  相似文献   

9.
D J Begun  C F Aquadro 《Nature》1992,356(6369):519-520
Two genomic regions with unusually low recombination rates in Drosophila melanogaster have normal levels of divergence but greatly reduced nucleotide diversity, apparently resulting from the fixation of advantageous mutations and the associated hitch-hiking effect. Here we show that for 20 gene regions from across the genome, the amount of nucleotide diversity in natural populations of D. melanogaster is positively correlated with the regional rate of recombination. This cannot be explained by variation in mutation rates and/or functional constraint, because we observe no correlation between recombination rates and DNA sequence divergence between D. melanogaster and its sibling species, D. simulans. We suggest that the correlation may result from genetic hitch-hiking associated with the fixation of advantageous mutants. Hitch-hiking thus seems to occur over a large fraction of the Drosophila genome and may constitute a major constraint on levels of genetic variation in nature.  相似文献   

10.
Biologically diverse molecular variants within a single HIV-1 isolate   总被引:55,自引:0,他引:55  
AIDS is a disorder characterized by a slow progressive impairment of immune function and by infection of human immunodeficiency viruses (HIV-1, HIV-2). Our knowledge of how these viruses cause disease in man, or how the related lentiviruses (visna and equine infectious anaemia virus) cause disease in animals, is still fragmentary. In particular, the significance of genetic variation in HIV-1, occurring within populations, within individuals and over periods of time, and the mechanisms of viral persistence remain unclear. To address these issues we prepared a series of proviral clones of HIV-1 originating from a single patient and compared their biological properties. Here we show that hybrid genomes (in which the envelope region of six viral clones were separately substituted into a prototype HIV-1 genome) generated viruses with widely differing capacity to grow in human T cells, cell lines and monocytoid cultures. These data suggest that extensive biological variation exists in vivo within an infected individual and is in part determined at the level of the viral envelope.  相似文献   

11.
The genome of the human immunodeficiency virus is highly prone to recombination, although it is not obvious whether recombinants arise infrequently or whether they are constantly being spawned but escape identification because of the massive and rapid turnover of virus particles. Here we use fluorescence in situ hybridization to estimate the number of proviruses harboured by individual splenocytes from two HIV patients, and determine the extent of recombination by sequencing amplified DNA from these cells. We find an average of three or four proviruses per cell and evidence for huge numbers of recombinants and extensive genetic variation. Although this creates problems for phylogenetic analyses, which ignore recombination effects, the intracellular variation may help to broaden immune recognition.  相似文献   

12.
DNA typing from single hairs   总被引:71,自引:0,他引:71  
The characterization of genetic variation at the DNA level has generated significant advances in gene and disease mapping, and in the forensic identification of individuals. The most common method of DNA analysis, that of restriction fragment length polymorphism (RFLP), requires microgram amounts of relatively undegraded DNA for multi-locus typing, and hundreds of nanograms for single-locus comparisons. Such DNA frequently cannot be obtained from forensic samples such as single hairs and blood stains, or from anthropological, genetic or zoological samples collected in the field. To detect polymorphic DNA sequences from single human hairs, we have used the polymerase chain reaction (PCR), in which specific short regions of a gene can be greatly amplified in vitro from as little as a single molecule of DNA. We have detected genetically variable mitochondrial and nuclear DNA sequences from the root region of shed, as well as freshly-plucked, single hairs; mitochondrial DNA (mtDNA) sequences have been detected in a sample from a single hair shaft. We have used three different means of DNA typing on these samples: the determination of amplified DNA fragment length differences, hybridization with allele-specific oligonucleotide probes, and direct DNA sequencing.  相似文献   

13.
采用线粒体16S rRNA基因序列测定技术,分析了我国沿海长蛸4个野生群体的遗传结构及其变异。经比对获得了1个长度为512 bp的核苷酸片段,检测到48个变异位点,占分析位点总数的9.4%,45个个体共检测到30个单倍型,单倍型多样性指数H为0.964 6,总体核苷酸多样性指数Pi为0.032 9,表现出较丰富的遗传多样性。AMOVA分析表明,4个长蛸群体间存在较高的遗传分化,82.07%的遗传差异存在于群体间,而仅有17.93%的遗传差异存在于群体内。聚类分析也表明4个群体可明显聚为2个类群,一个由大连、青岛和舟山群体组成,另一个由厦门群体组成;厦门群体与其它群体间的遗传距离达到0.094,遗传分化系数和基因流分别达到0.97和0.02,表明厦门群体与其它3个群体有着显著的遗传隔离,可能为亚种水平的分化。上述群体间的分化可能与长蛸自身的底栖生活方式、海区水文条件及地理历史因素等有关。  相似文献   

14.
DNA fingerprinting in birds   总被引:16,自引:0,他引:16  
T Burke  M W Bruford 《Nature》1987,327(6118):149-152
Several regions of the human genome are highly variable in populations because the number of repeats in these regions of a short 'minisatellite' sequence varies at high frequency. Different minisatellites have a core sequence in common, however, and probes made up of tandem repeats of this core sequence detect many highly variable DNA fragments in several species including humans, cats, dogs and mice. The hypervariable sequences detected in this way are dispersed in the genome and their variability means that they can be used as a DNA 'fingerprint', providing a novel method for the identification of individuals, confirmation of biological relationships and human genetic analysis. We show here that human minisatellite-derived probes also detect highly variable regions in bird DNAs. Segregation analysis in a house sparrow family confirms that these regions comprise many mostly heterozygous dispersed loci and we conclude that house sparrow DNA fingerprints are analogous to those of humans. Fingerprint analysis identified one nestling, with fingerprint bands not present in the parent pair's fingerprints, which we conclude resulted from an extrapair copulation. Extrabond copulations have been described in many wild bird species, but their success and hence adaptive significance have rarely been quantifiable. DNA fingerprinting will be of great significance to studies of the sociobiology, demography and ecology of wild birds.  相似文献   

15.
Hijri M  Sanders IR 《Nature》2005,433(7022):160-163
Arbuscular mycorrhizal fungi (AMF) are ancient asexually reproducing organisms that form symbioses with the majority of plant species, improving plant nutrition and promoting plant diversity. Little is known about the evolution or organization of the genomes of any eukaryotic symbiont or ancient asexual organism. Direct evidence shows that one AMF species is heterokaryotic; that is, containing populations of genetically different nuclei. It has been suggested, however, that the genetic variation passed from generation to generation in AMF is simply due to multiple chromosome sets (that is, high ploidy). Here we show that previously documented genetic variation in Pol-like sequences, which are passed from generation to generation, cannot be due to either high ploidy or repeated gene duplications. Our results provide the clearest evidence so far for substantial genetic differences among nuclei in AMF. We also show that even AMF with a very large nuclear DNA content are haploid. An underlying principle of evolutionary theory is that an individual passes on one or half of its genome to each of its progeny. The coexistence of a population of many genomes in AMF and their transfer to subsequent generations, therefore, has far-reaching consequences for understanding genome evolution.  相似文献   

16.
TheisozymevariationpatternamongindividualsandpopulationsofDeutziamultiradiata¥HePing;TanFeng(DepartmentofLifeScience,Southwes...  相似文献   

17.
The International HapMap Project   总被引:1,自引:0,他引:1  
The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome and to make this information freely available in the public domain. An international consortium is developing a map of these patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance our ability to choose targets for therapeutic intervention.  相似文献   

18.
A map of human genome variation from population-scale sequencing   总被引:2,自引:0,他引:2  
Genomes Project Consortium 《Nature》2010,467(7319):1061-1073
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.  相似文献   

19.
Spontaneous mutations are the source of genetic variation required for evolutionary change, and are therefore important for many aspects of evolutionary biology. For example, the divergence between taxa at neutrally evolving sites in the genome is proportional to the per nucleotide mutation rate, u (ref. 1), and this can be used to date speciation events by assuming a molecular clock. The overall rate of occurrence of deleterious mutations in the genome each generation (U) appears in theories of nucleotide divergence and polymorphism, the evolution of sex and recombination, and the evolutionary consequences of inbreeding. However, estimates of U based on changes in allozymes or DNA sequences and fitness traits are discordant. Here we directly estimate u in Drosophila melanogaster by scanning 20 million bases of DNA from three sets of mutation accumulation lines by using denaturing high-performance liquid chromatography. From 37 mutation events that we detected, we obtained a mean estimate for u of 8.4 x 10(-9) per generation. Moreover, we detected significant heterogeneity in u among the three mutation-accumulation-line genotypes. By multiplying u by an estimate of the fraction of mutations that are deleterious in natural populations of Drosophila, we estimate that U is 1.2 per diploid genome. This high rate suggests that selection against deleterious mutations may have a key role in explaining patterns of genetic variation in the genome, and help to maintain recombination and sexual reproduction.  相似文献   

20.
Myotonic dystrophy (DM) is the most common form of adult muscular dystrophy, with a prevalence of 2-14 per 100,000 individuals. The disease is characterized by progressive muscle weakness and sustained muscle contraction, often with a wide range of accompanying symptoms. The age at onset and severity of the disease show extreme variation, both within and between families. Despite its clinical variability, this dominant condition segregates as a single locus at chromosome 19q13.3 in every population studied. It is flanked by the tightly linked genetic markers ERCC1 proximally and D19S51 distally; these define the DM critical region. We report the isolation of an expressed sequence from this region which detects a DNA fragment that is larger in affected individuals than in normal siblings or unaffected controls. The size of this fragment varies between affected siblings, and increases in size through generations in parallel with increasing severity of the disease. We postulate that this unstable DNA sequence is the molecular feature that underlies DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号