首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azevedo RB  Lohaus R  Srinivasan S  Dang KK  Burch CL 《Nature》2006,440(7080):87-90
The mutational deterministic hypothesis for the origin and maintenance of sexual reproduction posits that sex enhances the ability of natural selection to purge deleterious mutations after recombination brings them together into single genomes. This explanation requires negative epistasis, a type of genetic interaction where mutations are more harmful in combination than expected from their separate effects. The conceptual appeal of the mutational deterministic hypothesis has been offset by our inability to identify the mechanistic and evolutionary bases of negative epistasis. Here we show that negative epistasis can evolve as a consequence of sexual reproduction itself. Using an artificial gene network model, we find that recombination between gene networks imposes selection for genetic robustness, and that negative epistasis evolves as a by-product of this selection. Our results suggest that sexual reproduction selects for conditions that favour its own maintenance, a case of evolution forging its own path.  相似文献   

2.
Sexual selection and the maintenance of sex   总被引:5,自引:0,他引:5  
Sex is expensive. A population of females that reproduce asexually should prima facie have twice the growth rate of an otherwise equivalent anisogamous sexual population lacking paternal care, or a population with modes of paternal care that can be co-opted by parthenogenetic females. The two leading theories for the maintenance of sex require either synergistic interactions between deleterious mutations, or antagonistic epistasis between beneficial mutations. Current evidence is equivocal as to whether the required levels of epistasis exist. Here I show that a third factor, differential male mating success (or, more generally, higher variance in male than in female fitness), can drastically reduce mutational load in sexual populations with or without any form of epistasis. Differential mating success has the further advantage of being ubiquitous, and is likely to have preceded or evolved concurrently with anisogamy.  相似文献   

3.
Sexual selection and the maintenance of sexual reproduction   总被引:6,自引:0,他引:6  
Agrawal AF 《Nature》2001,411(6838):692-695
The maintenance of sexual reproduction is a problem in evolutionary theory because, all else being equal, asexual populations have a twofold fitness advantage over their sexual counterparts and should rapidly outnumber a sexual population because every individual has the potential to reproduce. The twofold cost of sex exists because of anisogamy or gamete dimorphism-egg-producing females make a larger contribution to the zygote compared with the small contribution made by the sperm of males, but both males and females contribute 50% of the genes. Anisogamy also generates the conditions for sexual selection, a powerful evolutionary force that does not exist in asexual populations. The continued prevalence of sexual reproduction indicates that the 'all else being equal' assumption is incorrect. Here I show that sexual selection can mitigate or even eliminate the cost of sex. If sexual selection causes deleterious mutations to be more deleterious in males than females, then deleterious mutations are maintained at lower equilibrium frequency in sexual populations relative to asexual populations. The fitness of sexual females is higher than asexuals because there is no difference in the fecundity of sexual females and asexuals of the same genotype, but the equilibrium frequency of deleterious mutations is lower in sexual populations. The results are not altered by synergistic epistasis in males.  相似文献   

4.
Peck JR  Waxman D 《Nature》2000,406(6794):399-404
How do deleterious mutations interact to affect fitness? The answer to this question has substantial implications for a variety of important problems in population biology, including the evolution of sex, the rate of adaptation and the conservation of small populations. Here we analyse a mathematical model of competition for food in which deleterious mutations affect competitive ability. We show that, if individuals usually compete in small groups, then competition can easily lead to a type of genetic interaction known as synergistic epistasis. This means that a deleterious mutation is most damaging in a genome that already has many other deleterious mutations. We also show that competition in small groups can produce a large advantage for sexual populations, both in mean fitness and in ability to resist invasion by asexual lineages. One implication of our findings is that experimental efforts to demonstrate synergistic epistasis may not succeed unless the experiments are redesigned to make them much more naturalistic.  相似文献   

5.
Negative genetic correlation between male sexual attractiveness and survival   总被引:16,自引:0,他引:16  
Brooks R 《Nature》2000,406(6791):67-70
Indirect selection of female mating preferences may result from a genetic association between male attractiveness and offspring fitness. The offspring of attractive males may have enhanced growth, fecundity, viability or attractiveness. However, the extent to which attractive males bear genes that reduce other fitness components has remained unexplored. Here I show that sexual attractiveness in male guppies (Poecilia reticulata) is heritable and genetically correlated with ornamentation. Like ornamentation, attractiveness may be substantially Y-linked. The benefit of mating with attractive males, and thus having attractive sons, is opposed by strong negative genetic correlation between attractiveness and both offspring survival and the number of sons maturing. Such correlations suggest either antagonistic pleiotropy between attractiveness and survival or linkage disequilibrium between attractive and deleterious alleles. The presence of many colour pattern genes on or near the non-recombining section of the Y chromosome may facilitate the accumulation of deleterious mutations by genetic hitchhiking. These findings show that genes enhancing sexual attractiveness may be associated with pleiotropic costs or heavy mutational loads.  相似文献   

6.
Fitness of RNA virus decreased by Muller's ratchet   总被引:35,自引:0,他引:35  
L Chao 《Nature》1990,348(6300):454-455
Why sex exists remains an unsolved problem in biology. If mutations are on the average deleterious, a high mutation rate can account for the evolution of sex. One form of this mutational hypothesis is Muller's ratchet. If the mutation rate is high, mutation-free individuals become rare and they can be lost by genetic drift in small populations. In asexual populations, as Muller noted, the loss is irreversible and the load of deleterious mutations increases in a ratchet-like manner with the successive loss of the least-mutated individuals. Sex can be advantageous because it increases the fitness of sexual populations by re-creating mutation-free individuals from mutated individuals and stops (or slows) Muller's ratchet. Although Muller's ratchet is an appealing hypothesis, it has been investigated and documented experimentally in only one group of organisms--ciliated protozoa. I initiated a study to examine the role of Muller's ratchet on the evolution of sex in RNA viruses and report here a significant decrease in fitness due to Muller's ratchet in 20 lineages of the RNA bacteriophage phi 6. These results show that deleterious mutations are generated at a sufficiently high rate to advance Muller's ratchet in an RNA virus and that beneficial, backward and compensatory mutations cannot stop the ratchet in the observed range of fitness decrease.  相似文献   

7.
Beardmore RE  Gudelj I  Lipson DA  Hurst LD 《Nature》2011,472(7343):342-346
How is diversity maintained? Environmental heterogeneity is considered to be important, yet diversity in seemingly homogeneous environments is nonetheless observed. This, it is assumed, must either be owing to weak selection, mutational input or a fitness advantage to genotypes when rare. Here we demonstrate the possibility of a new general mechanism of stable diversity maintenance, one that stems from metabolic and physiological trade-offs. The model requires that such trade-offs translate into a fitness landscape in which the most fit has unfit near-mutational neighbours, and a lower fitness peak also exists that is more mutationally robust. The 'survival of the fittest' applies at low mutation rates, giving way to 'survival of the flattest' at high mutation rates. However, as a consequence of quasispecies-level negative frequency-dependent selection and differences in mutational robustness we observe a transition zone in which both fittest and flattest coexist. Although diversity maintenance is possible for simple organisms in simple environments, the more trade-offs there are, the wider the maintenance zone becomes. The principle may be applied to lineages within a species or species within a community, potentially explaining why competitive exclusion need not be observed in homogeneous environments. This principle predicts the enigmatic richness of metabolic strategies in clonal bacteria and questions the safety of lethal mutagenesis as an antimicrobial treatment.  相似文献   

8.
Keightley PD  Otto SP 《Nature》2006,443(7107):89-92
Sex and recombination are widespread, but explaining these phenomena has been one of the most difficult problems in evolutionary biology. Recombination is advantageous when different individuals in a population carry different advantageous alleles. By bringing together advantageous alleles onto the same chromosome, recombination speeds up the process of adaptation and opposes the fixation of harmful mutations by means of Muller's ratchet. Nevertheless, adaptive substitutions favour sex and recombination only if the rate of adaptive mutation is high, and Muller's ratchet operates only in small or asexual populations. Here, by tracking the fate of modifier alleles that alter the frequency of sex and recombination, we show that background selection against deleterious mutant alleles provides a stochastic advantage to sex and recombination that increases with population size. The advantage arises because, with low levels of recombination, selection at other loci severely reduces the effective population size and genetic variance in fitness at a focal locus (the Hill-Robertson effect), making a population less able to respond to selection and to rid itself of deleterious mutations. Sex and recombination reveal the hidden genetic variance in fitness by combining chromosomes of intermediate fitness to create chromosomes that are relatively free of (or are loaded with) deleterious mutations. This increase in genetic variance within finite populations improves the response to selection and generates a substantial advantage to sex and recombination that is fairly insensitive to the form of epistatic interactions between deleterious alleles. The mechanism supported by our results offers a robust and broadly applicable explanation for the evolutionary advantage of recombination and can explain the spread of costly sex.  相似文献   

9.
Burch CL  Chao L 《Nature》2000,406(6796):625-628
The ubiquity of mechanisms that generate genetic variation has spurred arguments that evolvability, the ability to generate adaptive variation, has itself evolved in response to natural selection. The high mutation rate of RNA viruses is postulated to be an adaptation for evolvability, but the paradox is that whereas some RNA viruses evolve at high rates, others are highly stable. Here we show that evolvability in the RNA bacteriophage phi6 is also determined by the accessibility of advantageous genotypes within the mutational neighbourhood (the set of mutants one or a few mutational steps away). We found that two phi6 populations that were derived from a single ancestral phage repeatedly evolved at different rates and toward different fitness maxima. Fitness measurements of individual phages showed that the fitness distribution of mutants differed between the two populations. Whereas population A, which evolved toward a higher maximum, had a distribution that contained many advantageous mutants, population B, which evolved toward a lower maximum, had a distribution that contained only deleterious mutants. We interpret these distributions to measure the fitness effects of genotypes that are mutationally available to the two populations. Thus, the evolvability of phi6 is constrained by the distribution of its mutational neighbours, despite the fact that this phage has the characteristic high mutation rate of RNA viruses.  相似文献   

10.
Hayden EJ  Ferrada E  Wagner A 《Nature》2011,474(7349):92-95
Cryptic variation is caused by the robustness of phenotypes to mutations. Cryptic variation has no effect on phenotypes in a given genetic or environmental background, but it can have effects after mutations or environmental change. Because evolutionary adaptation by natural selection requires phenotypic variation, phenotypically revealed cryptic genetic variation may facilitate evolutionary adaptation. This is possible if the cryptic variation happens to be pre-adapted, or "exapted", to a new environment, and is thus advantageous once revealed. However, this facilitating role for cryptic variation has not been proven, partly because most pertinent work focuses on complex phenotypes of whole organisms whose genetic basis is incompletely understood. Here we show that populations of RNA enzymes with accumulated cryptic variation adapt more rapidly to a new substrate than a population without cryptic variation. A detailed analysis of our evolving RNA populations in genotype space shows that cryptic variation allows a population to explore new genotypes that become adaptive only in a new environment. Our observations show that cryptic variation contains new genotypes pre-adapted to a changed environment. Our results highlight the positive role that robustness and epistasis can have in adaptive evolution.  相似文献   

11.
Dosage sensitivity and the evolution of gene families in yeast   总被引:1,自引:0,他引:1  
Papp B  Pál C  Hurst LD 《Nature》2003,424(6945):194-197
  相似文献   

12.
R E Lenski  C Ofria  T C Collier  C Adami 《Nature》1999,400(6745):661-664
Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined 'metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.  相似文献   

13.
Spontaneous mutations are the source of genetic variation required for evolutionary change, and are therefore important for many aspects of evolutionary biology. For example, the divergence between taxa at neutrally evolving sites in the genome is proportional to the per nucleotide mutation rate, u (ref. 1), and this can be used to date speciation events by assuming a molecular clock. The overall rate of occurrence of deleterious mutations in the genome each generation (U) appears in theories of nucleotide divergence and polymorphism, the evolution of sex and recombination, and the evolutionary consequences of inbreeding. However, estimates of U based on changes in allozymes or DNA sequences and fitness traits are discordant. Here we directly estimate u in Drosophila melanogaster by scanning 20 million bases of DNA from three sets of mutation accumulation lines by using denaturing high-performance liquid chromatography. From 37 mutation events that we detected, we obtained a mean estimate for u of 8.4 x 10(-9) per generation. Moreover, we detected significant heterogeneity in u among the three mutation-accumulation-line genotypes. By multiplying u by an estimate of the fraction of mutations that are deleterious in natural populations of Drosophila, we estimate that U is 1.2 per diploid genome. This high rate suggests that selection against deleterious mutations may have a key role in explaining patterns of genetic variation in the genome, and help to maintain recombination and sexual reproduction.  相似文献   

14.
Matings between close relatives often reduce the fitness of offspring, probably because homozygosity leads to the expression of recessive deleterious alleles. Studies of several animals have shown that reproductive success is lower when genetic similarity between parents is high, and that survival and other measures of fitness increase with individual levels of genetic diversity. These studies indicate that natural selection may favour the avoidance of matings with genetically similar individuals. But constraints on social mate choice, such as a lack of alternatives, can lead to pairing with genetically similar mates. In such cases, it has been suggested that females may seek extra-pair copulations with less related males, but the evidence is weak or lacking. Here we report a strong positive relationship between the genetic similarity of social pair members and the occurrence of extra-pair paternity and maternity ('quasi-parasitism') in three species of shorebirds. We propose that extra-pair parentage may represent adaptive behavioural strategies to avoid the negative effects of pairing with a genetically similar mate.  相似文献   

15.
16.
Joron M  Brakefield PM 《Nature》2003,424(6945):191-194
Small isolated populations are frequently genetically less diverse than core populations, resulting in higher homozygosity that can hamper their long-term survival. The decrease in fitness of organisms owing to matings between relatives is well known from captive and laboratory animals. Such inbreeding can have strongly deleterious effects on life-history traits and survival, and can be critical to the success of population conservation. Because pedigrees are hard to follow in the wild, most field studies have used marker loci to establish that fitness declines with increasing homozygosity. Very few have experimentally explored the effects of inbreeding in the wild, or compared observations in the laboratory with field conditions. Here, using a technique involving the transfer of marker dusts during copulation, we show that a small decrease in mating success of captive inbred male butterflies in cages is greatly accentuated in conditions with unconstrained flight. Our results have important implications for conservation and for studies of sexual selection because they show that the behaviours underlying patterns of mating can be profoundly influenced by a history of inbreeding or by any restraining experimental conditions.  相似文献   

17.
Effects of diatoms on reproduction and growth of marine copepods   总被引:1,自引:0,他引:1  
Two hot spots in marine ecology, deleterious effects of diatoms and feeding selectivity of copepods, as well as new progress on these two issues achieved in the recent ten years, are reviewed. These two issues are considered correlated closely. Diatoms and their metabolites can induce deleterious effects on growth, reproduction and development of copepods, including increase of mortality and decrease of egg production, hatching and growth rates. Such negative effects, resulting from either chemical toxin or nutritional deficiency, can be conquered in natural environments by diverse feeding. It is therefore concluded that deleterious effects of diatoms observed in laboratory or during blooming period are only a special case that accommodation of feeding strategy of copepods is disabled. To understand their feeding strategy in natural environments is a prerequisite to explaining the mechanisms of deleterious effects caused by diatoms, and makes it possible to re-evaluate the energy flow in marine ecosystems.  相似文献   

18.
Sexually antagonistic genetic variation for fitness in red deer   总被引:1,自引:0,他引:1  
Evolutionary theory predicts the depletion of genetic variation in natural populations as a result of the effects of selection, but genetic variation is nevertheless abundant for many traits that are under directional or stabilizing selection. Evolutionary geneticists commonly try to explain this paradox with mechanisms that lead to a balance between mutation and selection. However, theoretical predictions of equilibrium genetic variance under mutation-selection balance are usually lower than the observed values, and the reason for this is unknown. The potential role of sexually antagonistic selection in maintaining genetic variation has received little attention in this debate, surprisingly given its potential ubiquity in dioecious organisms. At fitness-related loci, a given genotype may be selected in opposite directions in the two sexes. Such sexually antagonistic selection will reduce the otherwise-expected positive genetic correlation between male and female fitness. Both theory and experimental data suggest that males and females of the same species may have divergent genetic optima, but supporting data from wild populations are still scarce. Here we present evidence for sexually antagonistic fitness variation in a natural population, using data from a long-term study of red deer (Cervus elaphus). We show that male red deer with relatively high fitness fathered, on average, daughters with relatively low fitness. This was due to a negative genetic correlation between estimates of fitness in males and females. In particular, we show that selection favours males that carry low breeding values for female fitness. Our results demonstrate that sexually antagonistic selection can lead to a trade-off between the optimal genotypes for males and females; this mechanism will have profound effects on the operation of selection and the maintenance of genetic variation in natural populations.  相似文献   

19.
The mutation rate per genome for local affecting fitness is crucial in theories of the evolution of sex and recombination and of outbreeding mechanisms. Mutational variation in fitness may also be important in the evolution of mate choice in animals. No information is available on the rate at which spontaneous mutations with small effects on fitness arise, although viability (probability of survival to adulthood) has been studied in Drosophila melanogaster. These experiments involved the accumulation of spontaneous mutations in the virtual absence of natural selection, in a set of independently maintained lines with a common origin. The rates of decline in mean and increase in variance among lines permit estimation of limits to the mean number of new mutations arising per generation (U) and the average homozygous effect of a new mutation of minor effect(s). For the second chromosome of D. melanogaster, the value of U is at least 0.17 (ref. 7), and (1-h)s is less than 0.02, where hs is the average decline in fitness of heterozygotes. As the second chromosome is about 40% of the genome, these data indicate a mutation rate per haploid genome of at least 0.42 for viability. Here we present similar data on the effects of homozygous spontaneous mutations on a measure of fitness in D. melanogaster.  相似文献   

20.
Rapid evolution in response to high-temperature selection   总被引:4,自引:0,他引:4  
A F Bennett  K M Dao  R E Lenski 《Nature》1990,346(6279):79-81
Temperature is an important environmental factor affecting all organisms, and there is ample evidence from comparative physiology that species and even conspecific populations can adapt genetically to different temperature regimes. But the effect of these adaptations on fitness and the rapidity of their evolution is unknown, as is the extent to which they depend on pre-existing genetic variation rather than new mutations. We have begun a study of the evolutionary adaptation of Escherichia coli to different temperature regimes, taking advantage of the large population sizes and short generation times in experiments on this bacterial species. We report significant improvement in temperature-specific fitness of lines maintained at 42 degrees C for 200 generations (about one month). These changes in fitness are due to selection on de novo mutations and show that some biological systems can evolve rapidly in response to changes in environmental factors such as temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号