首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neuronal growth cones are guided to their targets by attractive and repulsive guidance cues. In mammals, netrin-1 is a bifunctional cue, attracting some axons and repelling others. Deleted in colorectal cancer (Dcc) is a receptor for netrin-1 that mediates its chemoattractive effect on commissural axons, but the signalling mechanisms that transduce this effect are poorly understood. Here we show that Dcc activates mitogen-activated protein kinase (MAPK) signalling, by means of extracellular signal-regulated kinase (ERK)-1 and -2, on netrin-1 binding in both transfected cells and commissural neurons. This activation is associated with recruitment of ERK-1/2 to a Dcc receptor complex. Inhibition of ERK-1/2 antagonizes netrin-dependent axon outgrowth and orientation. Thus, activation of MAPK signalling through Dcc contributes to netrin signalling in axon growth and guidance.  相似文献   

2.
The expression of the protein DCC (deleted in colorectal cancer) is lost or markedly reduced in numerous cancers and in the majority of colorectal cancers due to loss of heterozygosity in chromosome 18q, and has therefore been proposed to be a tumour suppressor. However, the rarity of mutations found in DCC, the lack of cancer predisposition of DCC mutant mice, and the presence of other tumour suppressor genes in 18q have raised doubts about the function of DCC as a tumour suppressor. Unlike classical tumour suppressors, DCC has been shown to induce apoptosis conditionally: by functioning as a dependence receptor, DCC induces apoptosis unless DCC is engaged by its ligand, netrin-1 (ref. 3). Here we show that inhibition of cell death by enforced expression of netrin-1 in mouse gastrointestinal tract leads to the spontaneous formation of hyperplastic and neoplastic lesions. Moreover, in the adenomatous polyposis coli mutant background associated with adenoma formation, enforced expression of netrin-1 engenders aggressive adenocarcinomatous malignancies. These data demonstrate that netrin-1 can promote intestinal tumour development, probably by regulating cell survival. Thus, a netrin-1 receptor or receptors function as conditional tumour suppressors.  相似文献   

3.
Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1.   总被引:16,自引:0,他引:16  
V H H?pker  D Shewan  M Tessier-Lavigne  M Poo  C Holt 《Nature》1999,401(6748):69-73
Growing axons are guided by both diffusible and substrate-bound factors. Growth cones of retinal neurons exhibit chemoattractive turning towards the diffusible factor netrin-1 in vitro and are guided into the optic nerve head (ONH) by localized netrin-1. Here we report that, in Xenopus, laminin-1 from the extracellular matrix (ECM), converts netrin-mediated attraction into repulsion. A soluble peptide fragment of laminin-1 (YIGSR) mimics this laminin-induced conversion. Low levels of cyclic AMP in growth cones also lead to the conversion of netrin-induced attraction into repulsion, and we show that the amount of cAMP decreases in the presence of laminin-1 or YIGSR, suggesting a possible mechanism for laminin's effect. At the netrin-1-rich ONH, where axons turn sharply to leave the eye, laminin-1 is confined to the retinal surface. Repulsion from the region in which laminin and netrin are coexpressed may help to drive axons into the region where only netrin is present, providing a mechanism for their escape from the retinal surface. Consistent with this idea, YIGSR peptides applied to the developing retina cause axons to be misdirected at the ONH. These findings indicate that ECM molecules not only promote axon outgrowth, but also modify the behaviour of growth cones in response to diffusible guidance cues.  相似文献   

4.
Signalling by intracellular second messengers such as cyclic nucleotides and Ca2+ is known to regulate attractive and repulsive guidance of axons by extracellular factors. However, the mechanism of interaction among these second messengers in determining the polarity of the guidance response is largely unknown. Here, we report that the ratio of cyclic AMP to cyclic GMP activities sets the polarity of netrin-1-induced axon guidance: high ratios favour attraction, whereas low ratios favour repulsion. Whole-cell recordings of Ca2+ currents at Xenopus spinal neuron growth cones indicate that cyclic nucleotide signalling directly modulates the activity of L-type Ca2+ channels (LCCs) in axonal growth cones. Furthermore, cGMP signalling activated by an arachidonate 12-lipoxygenase metabolite suppresses LCC activity triggered by netrin-1, and is required for growth-cone repulsion mediated by the DCC-UNC5 receptor complex. By linking cAMP and cGMP signalling and modulation of Ca2+ channel activity in growth cones, these findings delineate an early membrane-associated event responsible for signal transduction during bi-directional axon guidance.  相似文献   

5.
Since its discovery in the early 1990s the deleted in colorectal cancer (DCC) gene, located on chromosome 18q21, has been proposed as a tumour suppressor gene as its loss is implicated in the majority of advanced colorectal and many other cancers. DCC belongs to the family of netrin 1 receptors, which function as dependence receptors as they control survival or apoptosis depending on ligand binding. However, the role of DCC as a tumour suppressor remains controversial because of the rarity of DCC-specific mutations and the presence of other tumour suppressor genes in the same chromosomal region. Here we show that in a mouse model of mammary carcinoma based on somatic inactivation of p53, additional loss of DCC promotes metastasis formation without affecting the primary tumour phenotype. Furthermore, we demonstrate that in cell cultures derived from p53-deficient mouse mammary tumours DCC expression controls netrin-1-dependent cell survival, providing a mechanistic basis for the enhanced metastatic capacity of tumour cells lacking DCC. Consistent with this idea, in vivo tumour-cell survival is enhanced by DCC loss. Together, our data support the function of DCC as a context-dependent tumour suppressor that limits survival of disseminated tumour cells.  相似文献   

6.
The role of deleted in colorectal carcinoma (DCC) as a tumour suppressor has been a matter of debate for the past 15 years. DCC gene expression is lost or markedly reduced in the majority of advanced colorectal cancers and, by functioning as a dependence receptor, DCC has been shown to induce apoptosis unless engaged by its ligand, netrin-1 (ref. 2). However, so far no animal model has supported the view that the DCC loss-of-function is causally implicated as predisposing to aggressive cancer development. To investigate the role of DCC-induced apoptosis in the control of tumour progression, here we created a mouse model in which the pro-apoptotic activity of DCC is genetically silenced. Although the loss of DCC-induced apoptosis in this mouse model is not associated with a major disorganization of the intestines, it leads to spontaneous intestinal neoplasia at a relatively low frequency. Loss of DCC-induced apoptosis is also associated with an increase in the number and aggressiveness of intestinal tumours in a predisposing APC mutant context, resulting in the development of highly invasive adenocarcinomas. These results demonstrate that DCC functions as a tumour suppressor via its ability to trigger tumour cell apoptosis.  相似文献   

7.
C Jacquemin  H Thibout  B Lambert  C Correze 《Nature》1986,323(6084):182-184
Although cholera toxin induces a marked stimulation of adenylate cyclase activity in rat adipocyte plasma membranes, the holotoxin induces only a slight increase of cyclic AMP accumulation in intact cells. A similar apparent anomaly is seen with pertussis toxin, which has been shown to inhibit the Gi subunit of adenylate cyclase, and has a greater effect on cAMP accumulation and lipolysis than the activation by cholera toxin of the Gs subunit. To understand better the way in which these bacterial toxins are modifying the adipocyte cells, we prepared adipocyte plasma membranes and submitted them to ADP-ribosylation by cholera and pertussis toxins. During the incubation of control cells, we found endogenous ADP-ribosylation of Gs as a result of sustained stimulation of Gi by adenosine. Our results point to a possible homoeostatic system in which the autonomous adjustment of the basal activity of Gs as a function of that of Gi, under the control of feedback inhibitory ligands, ensures a steady production of cAMP within the cell.  相似文献   

8.
Blood vessels and nerves are complex, branched structures that share a high degree of anatomical similarity. Guidance of vessels and nerves has to be exquisitely regulated to ensure proper wiring of both systems. Several regulators of axon guidance have been identified and some of these are also expressed in endothelial cells; however, the extent to which their guidance functions are conserved in the vascular system is still incompletely understood. We show here that the repulsive netrin receptor UNC5B is expressed by endothelial tip cells of the vascular system. Disruption of the Unc5b gene in mice, or of Unc5b or netrin-1a in zebrafish, leads to aberrant extension of endothelial tip cell filopodia, excessive vessel branching and abnormal navigation. Netrin-1 causes endothelial filopodial retraction, but only when UNC5B is present. Thus, UNC5B functions as a repulsive netrin receptor in endothelial cells controlling morphogenesis of the vascular system.  相似文献   

9.
Wang GX  Poo MM 《Nature》2005,434(7035):898-904
Ion channels formed by the TRP (transient receptor potential) superfamily of proteins act as sensors for temperature, osmolarity, mechanical stress and taste. The growth cones of developing axons are responsible for sensing extracellular guidance factors, many of which trigger Ca2+ influx at the growth cone; however, the identity of the ion channels involved remains to be clarified. Here, we report that TRP-like channel activity exists in the growth cones of cultured Xenopus neurons and can be modulated by exposure to netrin-1 and brain-derived neurotrophic factor, two chemoattractants for axon guidance. Whole-cell recording from growth cones showed that netrin-1 induced a membrane depolarization, part of which remained after all major voltage-dependent channels were blocked. Furthermore, the membrane depolarization was sensitive to blockers of TRP channels. Pharmacological blockade of putative TRP currents or downregulation of Xenopus TRP-1 (xTRPC1) expression with a specific morpholino oligonucleotide abolished the growth-cone turning and Ca2+ elevation induced by a netrin-1 gradient. Thus, TRPC currents reflect early events in the growth cone's detection of some extracellular guidance signals, resulting in membrane depolarization and cytoplasmic Ca2+ elevation that mediates the turning of growth cones.  相似文献   

10.
Hiramoto M  Hiromi Y  Giniger E  Hotta Y 《Nature》2000,406(6798):886-889
Netrin is a secreted protein that can act as a chemotropic axon guidance cue. Two classes of Netrin receptor, DCC and UNC-5 (refs 6-9), are required for axon guidance and are thought to mediate Netrin signals in growth cones through their cytoplasmic domains. However, in the guidance of Drosophila photoreceptor axons, the DCC orthologue Frazzled is required not in the photoreceptor neurons but instead in their targets, indicating that Frazzled also has a non-cell-autonomous function. Here we show that Frazzled can capture Netrin and 'present' it for recognition by other receptors. Moreover, Frazzled itself is actively localized within the axon through its cytoplasmic domain, and thereby rearranges Netrin protein into a spatial pattern completely different from the pattern of Netrin gene expression. Frazzled-dependent guidance of one pioneer neuron in the central nervous system can be accounted for solely on the basis of this ability of Frazzled to control Netrin distribution, and not by Frazzled signalling. We propose a model of patterning mechanism in which a receptor rearranges secreted ligand molecules, thereby creating positional information for other receptors.  相似文献   

11.
Transduction in taste receptor cells requires cAMP-dependent protein kinase   总被引:11,自引:0,他引:11  
P Avenet  F Hofmann  B Lindemann 《Nature》1988,331(6154):351-354
In taste chemoreception, cyclic adenosine monophosphate (cAMP) appears to be one of the intracellular messengers coupling reception of stimulus to the generation of the response. The recent finding that sweet agents cause a GTP-dependent generation of cAMP poses the question of how this cytosolic messenger acts at the membrane of taste receptor cells. We have shown that cAMP causes a substantial depolarization in these cells. Here we show with whole-cell recordings and inside-out membrane patches that the depolarization caused by cAMP is accounted for by the action of cAMP-dependent protein kinase, which inactivates potassium channels predominantly of 44 pS conductance. Thus, intracellular signalling of the gustatory cells differs from that of olfactory and photoreceptor cells, where cyclic nucleotides control unspecific channels by binding to them rather than by inducing their phosphorylation.  相似文献   

12.
Nogo-66 receptor antagonist peptide promotes axonal regeneration   总被引:120,自引:0,他引:120  
GrandPré T  Li S  Strittmatter SM 《Nature》2002,417(6888):547-551
Myelin-derived axon outgrowth inhibitors, such as Nogo, may account for the lack of axonal regeneration in the central nervous system (CNS) after trauma in adult mammals. A 66-residue domain of Nogo (Nogo-66) is expressed on the surface of oligodendrocytes and can inhibit axonal outgrowth through an axonal Nogo-66 receptor (NgR). The IN-1 monoclonal antibody recognizes Nogo-A and promotes corticospinal tract regeneration and locomotor recovery; however, the undefined nature of the IN-1 epitope in Nogo, the limited specificity of IN-1 for Nogo, and nonspecific anti-myelin effects have prevented a firm conclusion about the role of Nogo-66 or NgR. Here, we identify competitive antagonists of NgR derived from amino-terminal peptide fragments of Nogo-66. The Nogo-66(1 40) antagonist peptide (NEP1 40) blocks Nogo-66 or CNS myelin inhibition of axonal outgrowth in vitro, demonstrating that NgR mediates a significant portion of axonal outgrowth inhibition by myelin. Intrathecal administration of NEP1 40 to rats with mid-thoracic spinal cord hemisection results in significant axon growth of the corticospinal tract, and improves functional recovery. Thus, Nogo-66 and NgR have central roles in limiting axonal regeneration after CNS injury, and NEP1-40 provides a potential therapeutic agent.  相似文献   

13.
From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.  相似文献   

14.
One of the biochemical results of ethanol exposure is a change in the amount of the intracellular second messenger cyclic AMP (cAMP) produced in response to receptor stimulation. In general, acute ethanol exposure increases the amount of cAMP produced on stimulation of receptors coupled to the enzyme adenylyl cyclase via the GTP-binding protein Gs, whereas chronic ethanol exposure has the opposite effect (results for receptors coupled via Gi have been more variable). We previously reported that adaptation to continuous ethanol exposure reduces receptor-stimulated cAMP production by 25-35% in a neuroblastoma cell line (NG108-15), and an even greater reduction of 75% was observed in lymphocytes taken from actively-drinking alcoholics. This reduction in receptor-stimulated cAMP levels was recently confirmed in platelets from alcoholics. None of these studies, however, determined whether more than one receptor coupled to adenylyl cyclase activity was affected in the same cell. Here we report that chronic ethanol exposure causes desensitization of heterologous receptors coupled to Gs as cAMP production mediated by prostaglandin E1 as well as by adenosine is reduced by approximately 30% in NG108-15 cells. We show that, after chronic ethanol exposure, the activity of the alpha subunit of Gs is decreased by 29%, the amount of alpha s protein is decreased by 38.5%, and alpha s messenger RNA is decreased by 30%. Thus, cellular adaptation to ethanol involves a reduction in alpha s mRNA and, as a consequence, reduced cAMP production by heterologous receptors coupled to Gs. Such changes in cAMP production may account for the tolerance and physical dependence on ethanol in alcoholism.  相似文献   

15.
W C Forrester  M Dell  E Perens  G Garriga 《Nature》1999,400(6747):881-885
Ror kinases are a family of orphan receptors with tyrosine kinase activity that are related to muscle specific kinase (MuSK), a receptor tyrosine kinase that assembles acetylcholine receptors at the neuromuscular junction. Although the functions of Ror kinases are unknown, similarities between Ror and MuSK kinases have led to speculation that Ror kinases regulate synaptic development. Here we show that the Caenorhabditis elegans gene cam-1 encodes a member of the Ror kinase family that guides migrating cells and orients the polarity of asymmetric cell divisions and axon outgrowth. We find that tyrosine kinase activity is required for some of the functions of CAM-1, but not for its role in cell migration. CAM-1 is expressed in cells that require its function, and acts cell autonomously in migrating neurons. Overexpression and loss of cam-1 function result in reciprocal cell-migration phenotypes, indicating that levels of CAM-1 influence the final positions of migrating cells. Our results raise the possibility that Ror kinases regulate cell motility and asymmetric cell division in organisms as diverse as nematodes and mammals.  相似文献   

16.
构建GPR41稳定细胞株,从RNA、蛋白水平验证了GPR41的表达并利用cAMP和钙流检测验证了GPR41的生物活性.实验结果表明,该细胞株可以用于筛选受体激动剂.从海藻来源的黄曲霉中提取到的次级代谢产物用于筛选GPR41的激动剂.实验结果还表明,2-吡喃酮类化合物(37号)在1μmol/L浓度条件下即可具有GPR41受体激动活性.这是首次报道2-吡喃酮类化合物具有GPR41受体激动活性.  相似文献   

17.
Wang KC  Koprivica V  Kim JA  Sivasankaran R  Guo Y  Neve RL  He Z 《Nature》2002,417(6892):941-944
The inhibitory activity associated with myelin is a major obstacle for successful axon regeneration in the adult mammalian central nervous system (CNS). In addition to myelin-associated glycoprotein (MAG) and Nogo-A, available evidence suggests the existence of additional inhibitors in CNS myelin. We show here that a glycosylphosphatidylinositol (GPI)-anchored CNS myelin protein, oligodendrocyte-myelin glycoprotein (OMgp), is a potent inhibitor of neurite outgrowth in cultured neurons. Like Nogo-A, OMgp contributes significantly to the inhibitory activity associated with CNS myelin. To further elucidate the mechanisms that mediate this inhibitory activity of OMgp, we screened an expression library and identified the Nogo receptor (NgR) as a high-affinity OMgp-binding protein. Cleavage of NgR and other GPI-linked proteins from the cell surface renders axons of dorsal root ganglia insensitive to OMgp. Introduction of exogenous NgR confers OMgp responsiveness to otherwise insensitive neurons. Thus, OMgp is an important inhibitor of neurite outgrowth that acts through NgR and its associated receptor complex. Interfering with the OMgp/NgR pathway may allow lesioned axons to regenerate after injury in vivo.  相似文献   

18.
Mao B  Wu W  Davidson G  Marhold J  Li M  Mechler BM  Delius H  Hoppe D  Stannek P  Walter C  Glinka A  Niehrs C 《Nature》2002,417(6889):664-667
The Wnt family of secreted glycoproteins mediate cell cell interactions during cell growth and differentiation in both embryos and adults. Canonical Wnt signalling by way of the beta-catenin pathway is transduced by two receptor families. Frizzled proteins and lipoprotein-receptor-related proteins 5 and 6 (LRP5/6) bind Wnts and transmit their signal by stabilizing intracellular beta-catenin. Wnt/beta-catenin signalling is inhibited by the secreted protein Dickkopf1 (Dkk1), a member of a multigene family, which induces head formation in amphibian embryos. Dkk1 has been shown to inhibit Wnt signalling by binding to and antagonizing LRP5/6. Here we show that the transmembrane proteins Kremen1 and Kremen2 are high-affinity Dkk1 receptors that functionally cooperate with Dkk1 to block Wnt/beta-catenin signalling. Kremen2 forms a ternary complex with Dkk1 and LRP6, and induces rapid endocytosis and removal of the Wnt receptor LRP6 from the plasma membrane. The results indicate that Kremen1 and Kremen2 are components of a membrane complex modulating canonical Wnt signalling through LRP6 in vertebrates.  相似文献   

19.
Calcium signalling in the guidance of nerve growth by netrin-1   总被引:7,自引:0,他引:7  
Pathfinding by growing axons in the developing nervous system is guided by diffusible or bound factors that attract or repel the axonal growth cone. The cytoplasmic signalling mechanisms that trigger the responses of the growth cone to guidance factors are mostly unknown. Previous studies have shown that the level and temporal patterns of cytoplasmic Ca2+ can regulate the rate of growth-cone extension in vitro and in vivo. Here we report that Ca2+ also mediates the turning behaviour of the growth cones of cultured Xenopus neurons that are induced by an extracellular gradient of netrin-1, an established diffusible guidance factor in vivo. The netrin-1-induced turning response depends on Ca2+ influx through plasma membrane Ca2+ channels, as well as Ca2+-induced Ca2+ release from cytoplasmic stores. Reduction of Ca2+ signals by blocking either of these two Ca2+ sources converted the netrin-1-induced response from attraction to repulsion. Activation of Ca2+-induced Ca2+ release from internal stores with a gradient of ryanodine in the absence of netrin-1 was sufficient to trigger either attractive or repulsive responses, depending on the ryanodine concentration used. These results support the model that cytoplasmic Ca2+ signals mediate growth-cone guidance by netrin-1, and different patterns of Ca2+ elevation trigger attractive and repulsive turning responses.  相似文献   

20.
Role for mouse macrophage IgG Fc receptor as ligand-dependent ion channel   总被引:1,自引:0,他引:1  
J D Young  J C Unkeless  T M Young  A Mauro  Z A Cohn 《Nature》1983,306(5939):186-189
The interaction of ligands with the mouse macrophage Fc receptor which binds IgG2b and IgG1 immune complexes (FcR gamma 2b/gamma 1) triggers phagocytosis and secretion of various mediators of inflammation. FcR gamma 2b/gamma 1 has been purified using a monoclonal anti-FcR antibody, 2.4G2, and seems to be an integral membrane glycoprotein of molecular weight (Mr) 47,000-60,000 (ref. 6). Monoclonal antibody 2.4G2 is suitable as a tool for functional studies of FcR because it binds to a functional site of the receptor and induces cellular responses that are normally associated with the occupied receptor. We reported previously that binding of ligands to the macrophage FcR resulted in Na+/K+ ion fluxes through the plasma membrane, and that similar ion fluxes were observed in proteoliposomes containing reconstituted FcR. We have now incorporated FcR into planar lipid bilayers and report here that FcR gamma 2b/gamma 1 forms ligand-dependent cation-selective ion channels, with a conductance of 60 pS in 1 M KCl and an average open channel lifetime of 250 ms. The conductance decays to baseline levels within a few minutes. These results suggest a receptor-ionophore model for the signalling of phagocytosis and inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号