共查询到19条相似文献,搜索用时 46 毫秒
1.
基于Gabor小波能量子带分块的稀疏表示人脸识别 总被引:1,自引:0,他引:1
基于稀疏表示分类的人脸识别通常提取特征脸、随机脸和费歇尔脸这些整体特征,忽略了局部特征在克服光照和表情变化方面的优越性。针对以上问题,本文提出了基于Gabor小波能量子带分块的稀疏表示人脸识别算法。首先将人脸图像进行不同尺度和方向下的Gabor小波变换,对得到的每个能量子带进行分块,然后将各子块能量信息融合组成子带的特征向量,再将各能量子带特征向量融合组成增强的Gabor特征向量,最后将该特征应用于稀疏表示人脸识别。实验结果表明,该算法对于光照和表情变化具较好的的鲁棒性。 相似文献
2.
为提高对光照、表情、姿态等可变因素的鲁棒性,提出一种基于多方向Gabor特征图稀疏表示的人脸识别方法.对人脸图像进行多方向多尺度Gabor变换,然后将同一方向不同尺度的Gabor特征进行融合得到多方向特征图,再对每个方向的融合特征图提取Gist特征并赋予自适应权重,接着将所有方向特征图的自适应加权Gist特征串联构成人脸图像特征向量,最后利用稀疏表示分类方法实现人脸识别.实验结果表明,本文算法在Yale、ORL和Extended Yale B人脸数据库上的平均识别率分别达到99.8%、99.7%和100.0%. 相似文献
3.
为进一步有效提升稀疏表示人脸识别系统的识别率和可靠性,在分析人脸图像稀疏表示系数分类能力的基础上,提出了一种基于残差加权的稀疏表示人脸识别新方法.该方法通过对类残差图像关于所属类稀疏表示系数的l2范数进行归一化加权,有效提升了原始基于类残差判决的识别能力.仿真实验结果表明:改进的基于残差加权的稀疏表示方法能够有效提高系统的识别性能. 相似文献
4.
为消除非受控训练环境中光照/表情变化的不利影响,控制部分遮挡/伪装对人脸图像的破坏程度,提出了一种基于低秩矩阵恢复的字典优化设计,以增强稀疏表示人脸识别的性能.首先对存在非受控干扰成分的训练字典进行低秩矩阵恢复,获得相对\"干净\"的训练图像进行特征提取;接着采用分块相似性先验嵌入稀疏编码的方法实现对人脸图像的分类.实验结果表明,通过改进稀疏编码字典的鉴别能力,系统能更有效地抑制光照、表情、遮挡/伪装的影响,其识别的稳健性和鲁棒性得到了明显提升. 相似文献
5.
稀疏表示人脸识别算法的主要思想是:一个未知的测试图像可以近似表示为所有与其隶属同类的训练样本的一个线性组合.然而,人脸之间存在着极大的相似性,同时易受到外部环境的影响,人脸分类的本身存在着一定的不确定性.针对这种不确定性,结合模糊集合理论,提出了一种新的模糊稀疏表示人脸识别算法.首先,引入一个非线性函数描述人脸的相似性程度.然后,基于该相似性度量以及最近邻分类器思想,定义一个自适应的模糊隶属度函数来分配人脸对类的隶属程度.而这一过程恰使得这些隶属度是稀疏化的.最后,将稀疏化的模糊隶属度作为训练样本表示测试样本的权值系数,进而重构测试图像.采用MATLAB在ORL和Yale人脸数据库上进行仿真实验,验证了该算法的有效性和稳定性. 相似文献
6.
基于单演特征和稀疏表示的人脸识别 总被引:1,自引:0,他引:1
为了使得稀疏表示分类方法具有更好的识别效果,提出了基于单演特征的稀疏表示分类( MSRC) 方法. 相对于Gabor 特征,单演特征能够用于提取图像的相位信息,而相位信息对光照不敏感,因此MSRC 方法能提高图像的光照鲁棒性. 相对于Gabor 特征的多尺度和多方向,单演特征能够减少特征的处理时间. 实验结果表明: 文中所提的方法具有使用价值,识别率和速度方面得到了一定的提升. 相似文献
7.
采用联合动态稀疏表示方法构造一种新型的多图像人脸识别模型.该模型在多张人脸图像的稀疏表示矩阵上,利用动态数集得到联合动态稀疏表示矩阵,识别多图像的人脸.在多张人脸图像作为测试样本的情况下,利用多图像之间的关联性提高人脸图像识别的准确率.最后利用CMU人脸图像库对该算法进行仿真,结果表明其识别率较其他算法有很大的提高. 相似文献
8.
当训练和测试图像同时受到污损时,人脸识别的性能会急剧下降。为了解决这一问题,提出了一种新的人脸识别算法。首先利用鲁棒主成分分析(robust principal component analysis,RPCA)方法得到训练样本的低秩部分;然后基于原始训练样本及其低秩部分得到低秩投影矩阵,该矩阵可以对存在污损的测试图像进行恢复;最后使用稀疏表示分类(sparse representation based classification,SRC)算法对恢复后的测试图像进行分类。在两个公开数据库上进行实验,实验结果证明了本文算法的有效性,同时识别性能优于SRC及线性回归分类(linear regression classification,LRC)方法,能在一定程度上处理样本数据受到污损的情况。 相似文献
9.
本文提出一种基于稀疏表示的掌纹识别新方法。该方法将测试掌纹图像表示为训练掌纹图像的线性组合,其表示的系数是稀疏的,最大系数所对应的类别即掌纹的类别。对于包含大量噪声和大面积遮挡的掌纹图像,我们把这样的掌纹图像看作是原始掌纹图像和噪声(或者遮挡物)的相加,对于原始掌纹图像和噪声(或者遮挡物)分别用不同的基来稀疏表示,这样可以有效地分离看掌纹和噪声(或者遮挡物),自然可以达到较好的识别率。 相似文献
10.
一种结合稀疏表示和切比雪夫矩的人脸识别算法 总被引:1,自引:0,他引:1
在基于稀疏表示的人脸识别算法的基础上,利用切比雪夫矩在图像重建及抗噪声方面的良好性能,提出了一种结合稀疏表示和切比雪夫矩的人脸识别算法,对有无加性噪声干扰的人脸图像进行识别.给出了详细的数学推导过程和算法实现步骤,并通过实验对算法进行了验证.针对扩展的Yale B人脸库和AR人脸库的识别结果表明,当特征空间维数为496时,该算法在不同光照条件和不同表情条件下的识别率分别为98.33%和88.72%,在添加椒盐噪声后像素破坏比例小于60%的条件下识别率为100%.与基于随机脸的最近邻分类法、最近子空间分类法及传统SRC算法相比,该算法在抵抗图像的细节信息变化方面具有更好的鲁棒性. 相似文献
11.
人脸识别的识别率受众多因素影响,目前已有很多成形的高识别率算法,然而,随着数据库中人脸图像的增加,识别率下降很快。鉴于该特点,采用频域下的稀疏表示分类算法能有效解决上述问题,先使用快速傅里叶变换(FFT)将人脸数据从时域变换到频域,再通过l1范数最优化稀疏表示算法,把所有训练样本作为基向量,稀疏表示出测试样本,最后使用最近邻子空间算法分类。在扩展的Yale B人脸库中实验结果表明,该算法具有有效性。 相似文献
12.
人脸识别技术是目前最具发展潜力的生物特征识别技术之一。眼镜、围巾等遮挡物的存在对人脸识别系统的识别率影响很大,为了提高有遮挡的正面人脸图像的识别率,文章提出了基于稀疏表达分类的去除遮挡的方法。该方法对于有遮挡的人脸图像先求出其在无遮挡人脸图像训练集上的稀疏系数,再根据求得的稀疏系数进行恢复重建,得到去遮挡的人脸图像。实验表明该方法能有效地去除遮挡和提高识别率。 相似文献
13.
作为图像局部特征区域的有效描述方法,局部二值模式是目前对二维图像最有效的纹理分析特征之一。本文提出了基于局部二值模式特征的稀疏表示人耳识别方法。该识别算法首先提取训练人耳图像的局部二值模式特征描述子作为稀疏表示的字典,然后将测试样本的局部二值模式特征描述子表示为字典中所有局部二值模式原子的稀疏线性组合,最后通过求解稀疏表示模型得到稀疏编码系数,根据测试人耳图像的重建误差进行识别。在UND-J2人耳库和USTB人耳库上的实验结果表明,基于局部二值模式特征的稀疏表示人耳识别方法对人耳图像光照变化、姿态变化以及人耳遮挡具有更好的鲁棒性,实现了更高的识别率。 相似文献
14.
一种新的基于DCT变换的人脸表征 总被引:1,自引:0,他引:1
DCT变换是一种与KL变换非常相似的次最优变换算法.由于它独立于信号量,并且在维数下降、特征提取方面都非常接近经典的KL变换算法,因此DCT变换已经适用于模式识别领域.文章针对人脸图像,基于DCT变换,提出了一种融合整体DCT变换和分块加权DCT变换提取人脸图像的整体特征系数和局部特征系数,用于人脸表征的新方法.实验结果表明,本方法无论是在识别率还是在时间性能方面都优于传统的KL变换. 相似文献
15.
16.
针对基于仿射包的图像集人脸识别方法(AHISD)对于异常值数据的敏感性,提出了一种鲁棒性更强的方法(R1-AHISD).以仿射包模型对图像集建模,通过R1-PCA算法获得仿射子空间的正交基,进而计算定义的仿射包之间的距离,以最近邻分类器得到分类结果.在Honda/UCSD数据库上的仿真实验表明,本方法可以有效地提高识别率和对异常值数据的鲁棒性. 相似文献
17.
一种面向稀疏表示的最大间隔字典学习算法 总被引:1,自引:0,他引:1
近年来,基于稀疏表示的分类技术(SRC)在图像分类和目标识别中取得了巨大的成功。在该框架中,过完备基的学习和多类分类器(通常为支持向量机SVM)的训练是最关键的两个步骤。但在目前的许多方法中,这两个模块的构建过程都是相互独立的。该文针对以上问题,提出了一种用于稀疏表示的最大间隔字典学习算法,将两类SVM分类器的损失函数项的平方及分类间隔作为正则项与稀疏字典的学习过程进行了整合,并提出相应的坐标轮换优化算法对目标函数进行优化,实现了字典和分类器的同步学习。所提出的框架能够增强多类分类器中两类分类器的推广性能,并减少多类分类器的误差界。为了对所提出算法的性能进行评价,在2个常用标准库上进行了分类实验。结果表明,所提出的算法的与SRC相比识别率提升均超过3%。 相似文献
18.
基于两阶段表示的人脸识别算法(TPTSR)识别率高,并且对遮挡、噪声等干扰鲁棒,但是当人脸姿态有较大变化时,TPTSR算法的识别率会明显下降.针对这一问题,提出基于局部正脸合成和TPTSR的三阶段人脸识别算法:第一个阶段,正脸合成阶段,利用提出的正脸合成算法和视点库,将偏转角度较大的测试样本合成相应的正脸,作为新的测试样本;第二个阶段,样本筛选阶段,选择出对最新的测试样本最具表示能力的M个训练样本;第三个阶段,决策识别阶段,用这M个训练样本做人脸识别.通过与经典算法的对比实验证明,提出的3PTSR人脸识别算法能有效解决多姿态人脸识别问题. 相似文献
19.
人脸检测与识别技术综述 总被引:10,自引:2,他引:10
人脸的检测与识别技术因其巨大的应用价值及市场潜力,引起各方面的关注,已经成为图像工程和模式识别领域的研究热点。文章在回顾人脸检测与识别技术发展历程的基础上,对人脸检测与识别的多种相关技术作了介绍与评论,并讨论了该技术的最新发展方向及其国内的发展情况。 相似文献