首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
基于Gabor小波能量子带分块的稀疏表示人脸识别   总被引:1,自引:0,他引:1  
基于稀疏表示分类的人脸识别通常提取特征脸、随机脸和费歇尔脸这些整体特征,忽略了局部特征在克服光照和表情变化方面的优越性。针对以上问题,本文提出了基于Gabor小波能量子带分块的稀疏表示人脸识别算法。首先将人脸图像进行不同尺度和方向下的Gabor小波变换,对得到的每个能量子带进行分块,然后将各子块能量信息融合组成子带的特征向量,再将各能量子带特征向量融合组成增强的Gabor特征向量,最后将该特征应用于稀疏表示人脸识别。实验结果表明,该算法对于光照和表情变化具较好的的鲁棒性。  相似文献   

2.
为提高对光照、表情、姿态等可变因素的鲁棒性,提出一种基于多方向Gabor特征图稀疏表示的人脸识别方法.对人脸图像进行多方向多尺度Gabor变换,然后将同一方向不同尺度的Gabor特征进行融合得到多方向特征图,再对每个方向的融合特征图提取Gist特征并赋予自适应权重,接着将所有方向特征图的自适应加权Gist特征串联构成人脸图像特征向量,最后利用稀疏表示分类方法实现人脸识别.实验结果表明,本文算法在Yale、ORL和Extended Yale B人脸数据库上的平均识别率分别达到99.8%、99.7%和100.0%.   相似文献   

3.
为进一步有效提升稀疏表示人脸识别系统的识别率和可靠性,在分析人脸图像稀疏表示系数分类能力的基础上,提出了一种基于残差加权的稀疏表示人脸识别新方法.该方法通过对类残差图像关于所属类稀疏表示系数的l2范数进行归一化加权,有效提升了原始基于类残差判决的识别能力.仿真实验结果表明:改进的基于残差加权的稀疏表示方法能够有效提高系统的识别性能.  相似文献   

4.
基于单演特征和稀疏表示的人脸识别   总被引:1,自引:0,他引:1  
为了使得稀疏表示分类方法具有更好的识别效果,提出了基于单演特征的稀疏表示分类(MSRC)方法.相对于Gabor特征,单演特征能够用于提取图像的相位信息,而相位信息对光照不敏感,因此MSRC方法能提高图像的光照鲁棒性.相对于Gabor特征的多尺度和多方向,单演特征能够减少特征的处理时间.实验结果表明:文中所提的方法具有使用价值,识别率和速度方面得到了一定的提升.  相似文献   

5.
为消除非受控训练环境中光照/表情变化的不利影响,控制部分遮挡/伪装对人脸图像的破坏程度,提出了一种基于低秩矩阵恢复的字典优化设计,以增强稀疏表示人脸识别的性能.首先对存在非受控干扰成分的训练字典进行低秩矩阵恢复,获得相对"干净"的训练图像进行特征提取;接着采用分块相似性先验嵌入稀疏编码的方法实现对人脸图像的分类.实验结果表明,通过改进稀疏编码字典的鉴别能力,系统能更有效地抑制光照、表情、遮挡/伪装的影响,其识别的稳健性和鲁棒性得到了明显提升.  相似文献   

6.
稀疏表示人脸识别算法的主要思想是:一个未知的测试图像可以近似表示为所有与其隶属同类的训练样本的一个线性组合.然而,人脸之间存在着极大的相似性,同时易受到外部环境的影响,人脸分类的本身存在着一定的不确定性.针对这种不确定性,结合模糊集合理论,提出了一种新的模糊稀疏表示人脸识别算法.首先,引入一个非线性函数描述人脸的相似性程度.然后,基于该相似性度量以及最近邻分类器思想,定义一个自适应的模糊隶属度函数来分配人脸对类的隶属程度.而这一过程恰使得这些隶属度是稀疏化的.最后,将稀疏化的模糊隶属度作为训练样本表示测试样本的权值系数,进而重构测试图像.采用MATLAB在ORL和Yale人脸数据库上进行仿真实验,验证了该算法的有效性和稳定性.  相似文献   

7.
采用联合动态稀疏表示方法构造一种新型的多图像人脸识别模型.该模型在多张人脸图像的稀疏表示矩阵上,利用动态数集得到联合动态稀疏表示矩阵,识别多图像的人脸.在多张人脸图像作为测试样本的情况下,利用多图像之间的关联性提高人脸图像识别的准确率.最后利用CMU人脸图像库对该算法进行仿真,结果表明其识别率较其他算法有很大的提高.  相似文献   

8.
当训练和测试图像同时受到污损时,人脸识别的性能会急剧下降。为了解决这一问题,提出了一种新的人脸识别算法。首先利用鲁棒主成分分析(robust principal component analysis,RPCA)方法得到训练样本的低秩部分;然后基于原始训练样本及其低秩部分得到低秩投影矩阵,该矩阵可以对存在污损的测试图像进行恢复;最后使用稀疏表示分类(sparse representation based classification,SRC)算法对恢复后的测试图像进行分类。在两个公开数据库上进行实验,实验结果证明了本文算法的有效性,同时识别性能优于SRC及线性回归分类(linear regression classification,LRC)方法,能在一定程度上处理样本数据受到污损的情况。  相似文献   

9.
本文提出一种基于稀疏表示的掌纹识别新方法。该方法将测试掌纹图像表示为训练掌纹图像的线性组合,其表示的系数是稀疏的,最大系数所对应的类别即掌纹的类别。对于包含大量噪声和大面积遮挡的掌纹图像,我们把这样的掌纹图像看作是原始掌纹图像和噪声(或者遮挡物)的相加,对于原始掌纹图像和噪声(或者遮挡物)分别用不同的基来稀疏表示,这样可以有效地分离看掌纹和噪声(或者遮挡物),自然可以达到较好的识别率。  相似文献   

10.
一种结合稀疏表示和切比雪夫矩的人脸识别算法   总被引:1,自引:0,他引:1  
在基于稀疏表示的人脸识别算法的基础上,利用切比雪夫矩在图像重建及抗噪声方面的良好性能,提出了一种结合稀疏表示和切比雪夫矩的人脸识别算法,对有无加性噪声干扰的人脸图像进行识别.给出了详细的数学推导过程和算法实现步骤,并通过实验对算法进行了验证.针对扩展的Yale B人脸库和AR人脸库的识别结果表明,当特征空间维数为496时,该算法在不同光照条件和不同表情条件下的识别率分别为98.33%和88.72%,在添加椒盐噪声后像素破坏比例小于60%的条件下识别率为100%.与基于随机脸的最近邻分类法、最近子空间分类法及传统SRC算法相比,该算法在抵抗图像的细节信息变化方面具有更好的鲁棒性.  相似文献   

11.
人脸识别的识别率受众多因素影响,目前已有很多成形的高识别率算法,然而,随着数据库中人脸图像的增加,识别率下降很快。鉴于该特点,采用频域下的稀疏表示分类算法能有效解决上述问题,先使用快速傅里叶变换(FFT)将人脸数据从时域变换到频域,再通过l1范数最优化稀疏表示算法,把所有训练样本作为基向量,稀疏表示出测试样本,最后使用最近邻子空间算法分类。在扩展的Yale B人脸库中实验结果表明,该算法具有有效性。  相似文献   

12.
基于稀疏表示分类(SRC,sparse representation for classification)是近年来模式识别领域中备受关注的一个研究热点。当每类训练样本较少时,SRC的识别效果往往不理想。为解决此问题,人们提出了拓展的稀疏表示分类算法。它引入了训练样本的类内变量矩阵,来补充每类训练样本信息。但是,该方法很难获取普遍存在于复杂数据如图像中的非线性信息。为此,提出了特征空间中的拓展稀疏人脸识别算法。该算法将样本集非线性映射到新的特征空间中,计算每个训练样本在表示测试样本时所做的贡献。根据贡献大小,给每个训练样本赋予一定的权重。同时,利用类内变量矩阵,共同表示测试样本。实验表明所提出的算法优于其它经典稀疏表示分类算法。  相似文献   

13.
人脸识别技术是目前最具发展潜力的生物特征识别技术之一。眼镜、围巾等遮挡物的存在对人脸识别系统的识别率影响很大,为了提高有遮挡的正面人脸图像的识别率,文章提出了基于稀疏表达分类的去除遮挡的方法。该方法对于有遮挡的人脸图像先求出其在无遮挡人脸图像训练集上的稀疏系数,再根据求得的稀疏系数进行恢复重建,得到去遮挡的人脸图像。实验表明该方法能有效地去除遮挡和提高识别率。  相似文献   

14.
针对训练样本图像和测试样本图像均存在光照、污染、遮挡等情况下的人脸识别问题,提出一种基于鲁棒主成分分析的群稀疏表示人脸识别方法(group sparse representation face recognition method based on robust principal component analysis, GSR-RPCA)。该方法将人脸图像由空域变换到对数域,增强人脸图像的对比度,并通过结构非相关鲁棒主成分分析算法从训练样本图像矩阵D中分解出干净的低秩部分人脸图像矩阵A和误差图像矩阵E,以增强恢复数据的鉴别力;学习A与D之间的低秩映射关系矩阵P,并用P将存在遮挡的测试样本映射到其潜在的子空间下,得到干净的测试样本y;计算y在A上的群稀疏表示系数,并利用类关联重构残差对测试人脸进行识别,获得测试人脸的所属类别。在CMU PIE,Extended Yale B和AR数据库上的实验结果显示,提出方法具有较高的识别率和较强的鲁棒性。  相似文献   

15.
作为图像局部特征区域的有效描述方法,局部二值模式是目前对二维图像最有效的纹理分析特征之一。本文提出了基于局部二值模式特征的稀疏表示人耳识别方法。该识别算法首先提取训练人耳图像的局部二值模式特征描述子作为稀疏表示的字典,然后将测试样本的局部二值模式特征描述子表示为字典中所有局部二值模式原子的稀疏线性组合,最后通过求解稀疏表示模型得到稀疏编码系数,根据测试人耳图像的重建误差进行识别。在UND-J2人耳库和USTB人耳库上的实验结果表明,基于局部二值模式特征的稀疏表示人耳识别方法对人耳图像光照变化、姿态变化以及人耳遮挡具有更好的鲁棒性,实现了更高的识别率。  相似文献   

16.
基于整个数据集的稀疏表示(sparse representation classification,SRC)用于人脸识别在很大程度上影响了运行效率.如何利用较少样本稀疏表示在保证计算效率的同时,识别率也有一定提升,尤其是面对光照、角度、姿态等非受控环境,目前仍是一个问题.考虑到协同表示(collaborative representation classification,CRC)基于l2范数稀疏求解的优势,为进一步提升CRC的整体分类性能,引入类内近邻,提出一种二次近邻稀疏重构表示法.该方法首先在原始训练集上选择各类训练样本中与待测样本距离相近的若干样本组成近邻样本集,并协同表示,接着分别用各类近邻样本重构待测样本,再次选择与待测样本相近的若干重构样本协同表示,最终实现模式分类.在ORL和FERET数据库上的仿真实验表明,相比现有的一些CRC算法,该方法在一定程度上缩短了运行时间,并使识别更精确.  相似文献   

17.
提出一种基于谱特征参数的图像稀疏降噪算法。其采用稀疏重构理论为图像降噪框架,并将图论中的谱特征参数作为一约束条件,以有效克服传统稀疏重构中稀疏解不稳定的问题。该降噪算法将噪声图像块作为基础元素进行关系图构建,进而得到邻接矩阵。然后,求解该邻接矩阵对应的拉普拉斯矩阵,并对其进行特征分解,得到对应的特征向量,即谱特征参数。最后,将图像块矩阵与一定数目该高频谱特征参数所组成矩阵的乘积作为稀疏模型的正则项形成提出的算法模型。实验结果表明,与基于K-SVD的稀疏表示降噪算法相比,在相同参数的情况下提出的算法在多种类型噪声下对多幅图像的降噪效果都有着显著的提高。  相似文献   

18.
基于两阶段表示的人脸识别算法(TPTSR)识别率高,并且对遮挡、噪声等干扰鲁棒,但是当人脸姿态有较大变化时,TPTSR算法的识别率会明显下降.针对这一问题,提出基于局部正脸合成和TPTSR的三阶段人脸识别算法:第一个阶段,正脸合成阶段,利用提出的正脸合成算法和视点库,将偏转角度较大的测试样本合成相应的正脸,作为新的测试样本;第二个阶段,样本筛选阶段,选择出对最新的测试样本最具表示能力的M个训练样本;第三个阶段,决策识别阶段,用这M个训练样本做人脸识别.通过与经典算法的对比实验证明,提出的3PTSR人脸识别算法能有效解决多姿态人脸识别问题.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号