首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 205 毫秒
1.
The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sand and Fe–Cr. A sodium silicate–CO_2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing(SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe–Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe–Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe–Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.  相似文献   

2.
The microstructure and mechanical properties of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe high strength titanium alloy sheets prepared by unidirectional cold rolling and two-step cross cold rolling were investigated. Results showed that the β phase grains were refined significantly by cold rolling followed by solution treatment for a short time.Compared to unidirectional cold rolling, the short time solution treatment after two-step cross rolling could significantly reduce the non-uniformity of the microstructure of the alloy sheets. After aging treatment at 550 ℃,the anisotropy of the mechanical properties still existed in the unidirectional rolled sheets, and the tensile strength was highest along the rolling direction. After solution and aging treatment, the anisotropy of the mechanical properties of the two-step cross rolling process sheet was not obvious than unidirectional cold rolling,and alloy had good strength and plasticity matching.  相似文献   

3.
Numerical simulations were used to optimize the casting design and conditions for large cast iron castings for marine engines, Simulations of the mold filling and solidification sequences were used to analyze the problems of previous casting conditions with marked improvements for large cylinder liner parts, The amount and positions of chills were optimized to improve the mechanical properties and to minimize the shrinkage and micro porosity in the castings. Ultra sonic testing, penetration testing, and mechanical property testing show no defects in the castings with the productivity significantly increased.  相似文献   

4.
In this paper, the effects of rheo-diecast process parameters and T6 heat treatment on the microstructure and mechanical properties of the rheo-diecasting (RDC) semi-solid A390 alloy prepared through pure copper serpentine channel were investigated. The results indicate that the mechanical properties of the RDC samples change with the pouring temperature and injection pressure. In this case, a lower pouring temperature results in better tensile strength and elongation of the RDC A390 alloy; however, the tensile strength and elongation decrease when the pouring temperature decreases to 660°C. Higher injection pressures result in the improved mechanical properties of the RDC A390 alloy. To some extent, T6 heat treatment improves the tensile strength and ductility of the RDC A390 alloy compared to those of the non-heat treated alloy. However, when the pouring temperature and injection pressure are greater than 670°C and 70 MPa, respectively, the mechanical properties are sharply diminished.  相似文献   

5.
An Al-Mg-Si-Cu-Fe alloy was solid-solution treated at 560°C for 3 h and then cooled by water quenching or furnace cooling. The alloy samples which underwent cooling by these two methods were rolled at different temperatures. The microstructure and mechanical properties of the rolled alloys were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and tensile testing. For the water-quenched alloys, the peak tensile strength and elongation occurred at a rolling temperature of 180°C. For the furnace-cooled alloys, the tensile strength decreased initially, until the rolling temperature of 420°C, and then increased; the elongation increased consistently with increasing rolling temperature. The effects of grain boundary hardening and dislocation hardening on the mechanical properties of these rolled alloys decreased with increases in rolling temperature. The mechanical properties of the 180°C rolling water-quenched alloy were also improved by the presence of β″ phase. Above 420°C, the effect of solid-solution hardening on the mechanical properties of the rolled alloys increased with increases in rolling temperature.  相似文献   

6.
Crystallization properties play an important role in keeping a smooth running of continuous casting process and high surface quality of cast strands. To reduce fluorine pollution in slag, a new type of CaO-SiO2-Na2O (CSN) based mold flux was studied. The solidification and crystallization properties, including crystallization temperature, crystallization ratio and solidification mineragraphy, were measured, which were compared with the CaO-SiO2-CaF2 (GF) mold flux. The results show that the crystallization performance is equal to the high fluoride mold powder and CSN can be used for peritectic steel grades sensitive to longitudinal cracking in continuous casting.  相似文献   

7.
The tensile properties and fracture behavior of a cast nickel-base superalloy K445 in the temperature range of 25-1 000℃were investigated.The microstructure and fracture surfaces of the alloy were investigated by OM,SEM and TEM.The results revealed that an anomalous yield strength phenomenon exists in the alloy at medium high temperature.The yield strength decreases gradually with the increase of temperature,reaches the minimum value at 650℃,and then increases again to obtain 940 MPa,which is almost the ...  相似文献   

8.
The effects of Sc addition on the microstructure and mechanical properties of the ZK60 wrought magnesium alloy were investigated by using optical microscope,scanning electron microscopy,X-ray diffraction and tensile testing.The experimental results show that a minor Sc addition to ZK60 alloy has an obvious effect on the refinement of the microstructure of the ZK60 alloy. During hot extrusion,incomplete dynamic recrystallization occurs in all the alloys,and the recrystallized grains become much finer with...  相似文献   

9.
A new titanium alloy Ti12.5Zr2.5Nb2.5Ta (TZNT) for surgical implant application was synthesized and fully annealed at 700℃ for 45 min. The microstructure and the mechanical properties such as tensile properties and fatigue properties were investigated. The results show that TZNT mainly consists of a lot of lamella α-phase clusters with different orientations distributed in the original β-phase grain boundaries and a small amount of β phases between the lamella α phases. The alloy exhibits better ductility, lower modulus of elasticity, and lower admission strain in comparison with Ti6Al4V and Ti6Al7Nb, indicating that it has better biomechanical compatibility with human bones. The fatigue limit of TZNT is 333 MPa, at which the specimen has not failed at 107 cycles. A large number of striations present in the stable fatigue crack propagation area, and many dimples in the fast fatigue crack propagation area are observed, indicating the ductile fracture of the new alloy.  相似文献   

10.
This paper presents studies on the microstructure and mechanical properties of AISI 316L stainless steel and AISI 4340 low-alloy steel joints formed by the Nd:YAG laser welding process. The weld microstructures and heat affected zones (HAZs) were investigated. Austenitic microstructures were observed in all of the samples. The sizes of the HAZs changed when the heat input was varied, and the 316L sides exhibited a larger HAZ. The cooling rates were calculated by measuring the solidification dendrite arm spacing. It is shown that high cooling rates lead to an austenitic microstructure. Tensile tests were carried out, and the results revealed the tensile properties of both the base metals and the weldments. The hardness test results agreed well with the tensile test results.  相似文献   

11.
探讨了不同化学成分的砂型和金属型铸造灰铸铁试样经等温热处理后的组织和性能。试验表明CE=4.4%以上的砂型铸造灰铸铁试样,抗拉强度提高到263MPa,延伸率可达1%~2%。金属型铸造的CE=4.2%~4.3%的灰铸铁试样抗拉强度达到500MPa,延伸率可达1%。由于碳当量高,铸造工艺性较好,强度提高幅度较大,因此可望作为铸铁的新成员,进入工业应用领域。  相似文献   

12.
王言宏  王执福 《山东科学》1992,5(2):24-29,57
晶质石墨是一种优良的铸型材料。同砂型相比,石墨型铸件的外表光洁,尺寸精度高,内在组织晶粒细小,机械性能特别是硬度和冲击韧性有了一定程度的提高,石墨铸型具有生产实用性。  相似文献   

13.
采用快速原型树脂模铸造精密模具   总被引:4,自引:0,他引:4  
直接利用激光快速成型的原型树脂模,结合陶瓷型精密铸造技术,制得了高精度、低表面粗糙度、高使用寿命的钢模具,通过考察陶瓷型的强度、表面稳定性、透气性和尺寸偏差,得到了获得高质量陶瓷型的最佳工艺参数;详细分析了焙烧温度、水量、无水乙醇量等工艺因素对陶资中性能指标的影响,通过运用扫描电镜对表面稳定性试样及强度试样断口进行分析,认为粉料与颗粒间的结合强度是获得高质量精密铸型的主要影响因素。应用此陶瓷型铸造工艺浇铸的铸钢模具,尺寸精度达到国家标准CT3-4,表面粗糙度达Ra3.2,可用于实际生产。  相似文献   

14.
借助扫描电子显微镜、透射电子显微镜以及高温、室温拉伸和硬度测试研究了实验室研发的改进310奥氏体不锈钢在700℃长期时效后的组织与性能.700℃时效1000 h后,实验钢在晶界和晶内析出了大量(Cr,Fe,Mo)23C6、(Cr,Fe)23C6、σ相和少量的χ相.析出相对实验钢的室温力学性能有明显的强化作用.强度增加,硬度升高20 Hv,同时延伸率仍保持在30%以上.高温下,析出强化效应减弱,延伸率轻微下降.通过断口表面和剖面观察发现,时效1000 h后,实验钢的高温拉伸断口为韧性断裂,未观察到裂纹和孔洞;而室温拉伸断口为脆性断裂,断口附近则观察到σ相中出现裂纹和孔洞.从σ相的脆-韧转变和实验钢基体的室温和高温强度的不同,讨论了在室温拉伸过程中产生裂纹和孔洞的原因,以及时效对室温和高温力学行为的不同影响.  相似文献   

15.
本文通过消失模铸造和普通砂型铸造件的性能对比分析,发现消失模工艺所获铸件,其抗拉、抗压、抗弯、冲击韧性等力学性能指标都有很大幅度提高,而硬度略有下降。  相似文献   

16.
The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA CCTA). -The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, △TS, and low solidification temperature, △TS, whereas 0.1wt% Ce resulted in a fast solidification time, △ta-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index (Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.  相似文献   

17.
Induction hardening of dense Fe-Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C and compacted at 500, 600, and 700 MPa, respectively. The compacts were sintered at 1473 K for 1 h and then cooled at 6 K/min. Ferrite with pearlite was mostly observed in the sintered alloys with 0.4wt% C, whereas a carbide network was also present in the alloys with 0.8wt% C. Graphite at prior particle boundaries led to deterioration of the mechanical properties of alloys with 0.8wt% C, whereas no significant induction hardening was achieved in alloys with 0.4wt% C. Among the investigated samples, alloys with 0.6wt% C exhibited the highest strength and ductility and were found to be suitable for induction hardening. The hardening was carried out at a frequency of 2.0 kHz for 2-3 s. A case depth of 2.5 mm was achieved while maintaining the bulk (interior) hardness of approximately HV 230. A martensitic structure was observed on the outer periphery of the samples. The hardness varied from HV 600 to HV 375 from the sample surface to the interior of the case hardened region. The best combination of properties and hardening depth was achieved in case of the Fe-1.5Cr-0.2Mo alloy with 0.6wt% C.  相似文献   

18.
钢铸件铬系合金耐磨表面合金化研究   总被引:3,自引:0,他引:3  
本文利用真空密封原理,在铸型表面铺置干、散状铬系合金粉粒,系统地进行了钢铸件耐磨表面合金化的试验研究.合金化过程中基本上排除了传统工艺易于产生结合不好、气孔和夹渣等疵病的原因,从而稳定了合金化工艺过程,提高了合金化质量。试验表明,可以根据铸件使用性能要求,进行单元和多元铬系合金耐磨表而的合金设计,匹配适当的工艺参数,以获致良好的综合使用性能.  相似文献   

19.
The experimental results concerning the effects of Mo on the glass-forming ability (GFA), thermal stability, and mechanical, anticorrosion, and magnetic properties of an (Fe71.2B24Y4.8)96Nb4 bulk metallic glass (BMG) were presented. An industrial Fe-B alloy was used as the raw material, and a series of Fe-based BMGs were synthesized. In BMGs with the Mo contents of approximately 1at%-2at%, the cast alloy reached a critical diameter of 6 mm. The hardness and fracture strength also reached their maximum values in this alloy system. However, the anticorrosion and magnetic properties of the BMGs were not substantially improved by the addition of Mo. The low cost, good GFA, high hardness, and high fracture strength of the Fe-based BMGs developed in this work suggest that they are potential candidates for commercial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号