首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
The separation process of non-metallic inclusions at the steel–slag interface was simulated by physical modeling. Three different kinds of particles(octahedral, plate-like, and spherical) and three different oils(kerosene, bean oil, and pump oil) were used to model inclusions and slags, respectively. The effects of inclusion geometry(shape and size) and slag properties(viscosity and interfacial tension) on the separation process were investigated. The results revealed that the variation of surface free energy and the viscosity of the slag are two significant factors affecting the separation process of inclusions at the steel–slag interface. The variation of surface free energy helped inclusions enter the slag phase, whereas the decrease of slag viscosity shortened the separation time. The deformation of the steel–slag interface could give rise to the resistance force, which would resist inclusions passing through the interface. A liquid film formed on the inclusion as it passed through the steel–slag interface, which might be related to the inclusion's shape.  相似文献   

2.
The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dynamic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process,Al_2 O_3 inclusions transformed into Mg O inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and(Mg O) at the slag/refractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining refractory, forming the Al_2 O_3 or Mg O·Al_2 O_3. The slag had a significant acceleration effect on the mass transfer. The mass transfer rate(or the reaction rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the refining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1 x, and 2.2 x,respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.  相似文献   

3.
The low-cycle fatigue behavior of powder metallurgy Rene95 alloy containing surface inclusions was investigated by in-situ observation with scanning electron microscopy (SEM). The process of fatigue crack initiation and early stage of propagation behavior indicates that fatigue crack mainly occurs at the interface between the inclusion and the matrix. The effect of inclusion on the fatigue crack initiation and the early stage of crack growth was very obvious. The fatigue crack growth path in the matrix is similar to the shape of inclusion made on the basis of fatigue fracture image analysis. The empiric relation between the surface and inside crack growth length, near a surface inclusion, can be expressed. Therefore, the fatigue crack growth rate or life of P/M Rene95 alloy including the inclusions can be evaluated on the basis of the measurable surface crack length parameter. In addition, the effect of two inclusions on the fatigue crack initiation behavior was investigated by the in-situ observation with SEM.  相似文献   

4.
The observation on crack initiation and propagation of surface inclusion Al2O3 in seeded PM Rene95 was conducted by SEM in-situ tension test. The results show that the cracks often initiate at the inclusion/matrix interface vertical to the applied stress direction, and easily propagate along the interface into the matrix. The interface of inclusion/matrix is just mechanically bounded on the base of SEM observation. The weak bonding of inclusion/matrix interface and stress concentration around inclusions are the main reasons of the matrix/inclusion interface debonding and local plastic deformation under the tensile loading in the in-situ tension test. Surface inclusion does not definitely lead to the failure of in-situ tension test. But the early surface crack initiation caused by ceramic inclusion is critically harmful to the LCF property of PM Rene95 superalloy, which can't be ignored.  相似文献   

5.
In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed through the water/silicone oil interface. Motion parameters of the bubbles and droplets were obtained using particle kinematic analysis software, and the entrainment rate of the droplets was calculated. It was found that the entrainment rate decreased from 29.5% to 0 when the viscosity of the silicone oil was increased from 60 mPa·s to 820 mPa·s in the case of bubbles with a 5 mm equivalent diameter passing through the water/silicone oil interface. The results indicate that increasing the viscosity of the silicone oil is conducive to reducing the entrainment rate. The entrainment rate increased from 0 to 136.3% in the case of silicone oil with a viscosity of 60 mPa·s when the equivalent diameter of the bubbles was increased from 3 mm to 7 mm. We therefore conclude that small bubbles are also conductive to reducing the entrainment rate. The force analysis results for the water column indicate that the entrainment rate of droplets is affected by the velocity of the bubble passing through the water/silicone oil interface and that the entrainment rate decreases with the bubble velocity.  相似文献   

6.
The titanium nitride (TiNx) thin film with a controllable surface structure was fabricated by the dc-reactive magnetron sputtering technique, and the variation of microstructure in the surface layer with the energy of condensed adatom was investigated through X-ray diffraction (XRD) pattern and transmission electron microscope(TEM). It was found that the lattice parameters and the full width at half maximum (fwhm) of XRD peak on the top layers in the preferred orientation of (111) and (002) were closely correlated to the impacting induced phase composition, compressive strain, crystallite size and the fault density of the thin films. In the theory, a new means was used to model the atomistic process of per condensed adatom. The average energy at least in the minimum energy state of the incorporate adatom on TiN surface layer was statistically formulized through a careful consideration of dynamical process, which properly interpreted the experimental observations.  相似文献   

7.
This study involved the investigation of the effects of the continuous cooling process conditions on the crystallization and liberation characteristics of anosovite in Ti-bearing titanomagnetite smelting slag. The samples were heated until melting and then the temperature was held at 1650℃ for nearly 0.5 h; subsequently, the samples were cooled at different cooling rates to different temperatures and water-quenched after being held for different times at these temperatures. Last, the obtained crystallized samples were used to analyze the crystallization and liberation characteristics. It was found that, during the continuous cooling process, anosovite particles were found to initially precipitate in the slag at a relatively high crystallization temperature, showing the characteristics of euhedral crystal. The precipitation and growth of anosovite grain is strong and the morphology of anosovite was basically not affected by the continuous cooling conditions. From the morphology perspective, the formed anosovite is an excellent Ti-rich phase to be selective separated. The formation of spinel and diopside is negative for the liberation and selective separation of the anosovite phase. The crystallization diagrams of TiO2-MgO-CaO-SiO2-Al2O3-FeO slag undergoing different continuous cooling processes were constructed to help to determine the optimal continuous cooling-quenching condition for selective separation of anosovite. Moreover, the addition of B2O3 can enlarge the range of the optimal continuous cooling-quenching conditions for selective separation of anosovite.  相似文献   

8.
Considering the precise composition control on the vacuum refining of high-Mn steel, the behaviors of both Mn evaporation and nitrogen removal from molten Mn steel were investigated via vacuum slag refining in a vacuum induction furnace. It was found that the reaction interfaces of denitrification and Mn evaporation tend to migrate from the surface of slag layer to the surface of molten steel with the gradual exposure of molten steel during the vacuum slag refining process. Significantly, compared with the experimental group without slag addition, the addition of slag into steel can result in a lower Mn evaporation rate constant of 0.0192 cm·min?1 at 370 Pa, while the denitrification rate is almost not affected. Besides, the slag has a stronger inhibitory effect on Mn evaporation than the reduced vacuum pressure. Moreover, the inhibitory effect of the slag layer on Mn evaporation can be weakened with the increase of the initial Mn content in molten steel. The slag layer can work as an inhibitory layer to reduce the Mn evaporation from molten steel, the evaporation reaction of Mn mainly proceeds on the surface of the molten steel. This may be attributed to the Mn mass transfer coefficient for one of reaction at steel/slag interface, mass transfer in molten slag, and evaporation reaction at slag/gas interface is lower than that of evaporation reaction at steel/gas interface. The introduction of slag is proposed for both denitrification and manganese control during the vacuum refining process of Mn steels.  相似文献   

9.
The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O2-Al2O3-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O2in slag to avoid the loss of Mn due to the reaction;this process caused both Al2O3in slag and Si in steel to increase while Si O2and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al2O3-Mg O→Mg O→Mn O-Ca O-Al2O3-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions.  相似文献   

10.
The effects of oil film on the rolled surface, including surface roughness and topography, were investigated during cold rolling of aluminum strips. Various mineral oils with viscosities from 0.10 to 1.6 Pa.s were used to obtain different oil film thicknesses. Results from experiment and calculation show that the thicker oil film protects the initial roughening surface so that it leads to an increase in roughness of the rolled surface, in particular when the surface roughness has the character of direction. The rolled surface roughness was determined by λ, which is the ratio of oil film thickness to the combined surface roughness. When λ > 3, the rolled surface roughness increases rapidly with the increase in oil viscosity, whereas the surface roughening has already occurred when λ < 3, but the increase of the rolled surface roughness with increasing viscosity is not distinct.  相似文献   

11.
The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dy-namic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process, Al2O3 inclusions transformed into MgO inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and (MgO) at the slag/re-fractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining re-fractory, forming the Al2O3 or MgO·Al2O3. The slag had a significant acceleration effect on the mass transfer. The mass transfer rate (or the re-action rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the re-fining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1x, and 2.2x, respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.  相似文献   

12.
在DS-LD-RH-CC工艺IF钢工业生产过程系统取样和全氧含量、氮含量、非金属夹杂物形貌和化学成分检测的基础上,结合热力学分析,研究了非金属夹杂物含量、形貌与成分的演变过程.结果表明,冶炼过程钢中全氧含量逐渐降低,但需控制钢包渣氧化性以进一步降低铸坯中全氧含量;在浇铸过程中发生明显的增氮现象,应进一步加强保护浇铸,控制浇铸过程钢水增氮;在RH精炼过程中,脱氧后主要生成团簇状单一Al2O3夹杂物,Ti合金化后生成球形Al-Ti-O和内外分层的Al-Ti-Ca-Mg-O复合夹杂物;在钢水凝固过程中,生成了内层为Ti-Al-Mn-O-S、外层为TiN和AlN的复合夹杂物.在铸坯中还存在由结晶器卷渣导致的含有K,Na成分的Ti-Al-Ca-Si-Mn-O大型复合夹杂物.  相似文献   

13.
软接触结晶器内的钢液流动及夹杂物运动规律   总被引:1,自引:1,他引:0  
采用RhieChow非交错网格和适体坐标有限差分方法数值模拟了软接触结晶器内钢液流动和夹杂物的运动规律·结果表明:软接触结晶器上部熔池的搅拌强度增强,自由表面上的钢液流速和紊动能增加,钢液射流的渗透深度减小;在弯月面附近出现明显的钢液回流区;与传统结晶器相比,最大紊动能区从水口附近移动到弯月面附近;夹杂物上浮去除的趋势增加,且在结晶器内的滞留时间延长  相似文献   

14.
A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions. Fatigue mechanisms were also analyzed accordingly. The results showed that the effects of inclusions on fatigue life will distinctly decrease if the mechanical properties are close to those of the steel matrix.For the inclusions, which are tightly bonded with the steel matrix, when the Young's modulus is larger than that of the steel matrix, the stress will concentrate inside the inclusion; otherwise, the stress will concentrate in the steel matrix. If voids exist on the interface between inclusions and the steel matrix, their effects on the fatigue process differ with their positions relative to the inclusions. The void on one side of an inclusion perpendicular to the fatigue loading direction will aggravate the effect of inclusions on fatigue behavior and lead to a sharp stress concentration. The void on the top of inclusion along the fatigue loading direction will accelerate the debonding between the inclusion and steel matrix.  相似文献   

15.
探讨了BOF—LF—CC流程生产的SPHC连铸坯中大型夹杂物的类型、数量、尺寸及分布,并通过示踪剂追踪分析了钢中夹杂物的来源。结果表明:铸坯中大型夹杂物主要的三类复合夹杂物为Al2O3-CaO-MgO-MnS类、CaO-Al2O3类和MgO-CaS类,含量分别为56%、26.8%和17.2%,此外,含Al2O3大型夹杂物约占总数的82.8%。头坯中大型夹杂平均含量为245.8mg/10kg,稳态浇注下为85.75mg/10kg,换包过程中铸坯中大型夹杂物的平均含量为120.25mg/10kg,在非稳态浇注下,铸坯中非金属夹杂物含量较高。铸坯中大部分夹杂物来源并不单一,由脱氧产物与中间包覆盖剂、中间包打结料及结晶器保护渣集聚络合形成。  相似文献   

16.
A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions.Fatigue mechanisms were also analyzed accordingly.The results showed that the effects of inclusions on fatigue life will distinctly decrease if the mechanical properties are close to those of the steel matrix.For the inclusions,which are tightly bonded with the steel matrix,when the Young’s modulus is larger than that of the steel matrix,the stress will concentrate inside the inclusion;otherwise,the stress will concentrate in the steel matrix.If voids exist on the interface between inclusions and the steel matrix,their effects on the fatigue process differ with their positions relative to the inclusions.The void on one side of an inclusion perpendicular to the fatigue loading direction will aggravate the effect of inclusions on fatigue behavior and lead to a sharp stress concentration.The void on the top of inclusion along the fatigue loading direction will accelerate the debonding between the inclusion and steel matrix.  相似文献   

17.
通过对国内某钢厂BOF-LF-CC工艺生产50CrVA弹簧钢进行全流程连续取样,综合分析了冶炼过程中总氧( T. O.)、N含量变化,非金属夹杂物的衍变规律,以及铸坯中大型夹杂物的特征.结果表明,LF精炼前T. O.和N的平均含量分别为106×10-6和13×10-6,铸坯中分别为15×10-6和39×10-6,LF过程脱氧效果明显;运输和浇注过程存在较明显的二次氧化现象,需要加强大包到中间包的保护浇注;铸坯中夹杂物主要为CaO-Al2 O3-MgO和CaO-Al2 O3-SiO2复合氧化物夹杂,其中Al2 O3含量(质量分数)较高,达到60%~70%,未得到低熔点夹杂物,可通过适当提高精炼渣碱度,或喂入适量钙线促使夹杂物充分转变为成分更加均匀的低熔点夹杂物;大型夹杂物以CaO和CaO-Al2 O3-SiO2-( MgO)球状氧化物为主,还存在一定比例的纯Al2 O3夹杂物,需要延长钢包弱搅拌时间使夹杂物充分上浮.  相似文献   

18.
为了生产出低成本高质量的钢种,对唐钢公司采用转炉出钢渣洗工艺生产的45#钢进行了研究。结果表明:渣洗工艺能够很好的对Al2O3夹杂进行变性处理。渣洗前后、中间包及铸坯中显微夹杂物含量分别为15.308个/mm^2、8.705个/mm^2、6.563个/mm^2、4.373个/mm^2,夹杂物去除效果好;非稳态铸坯中大型夹杂物含量为100.34mg/10kg,是稳态浇铸时夹杂物含量的2.37倍;经能谱分析知非稳态铸坯大型夹杂物中含K、Na结晶器示踪元素的夹杂物占到总量的72%,表明非稳态浇铸对钢液洁净度有很大影响,浇铸过程中应注意结晶器液面波动等非稳态因素对铸坯质量的影响。  相似文献   

19.
哈贝马斯对《启蒙辩证法》的否定性解读,使得该著中的拯救逻辑遭到歪曲。由哈贝马斯的解读所延伸出的对《启蒙辩证法》拯救逻辑的美学化和精神分析化的重构与阿多尔诺的哲学思想相矛盾,由此我们必须重新反思哈贝马斯的解读模式。《启蒙辩证法》并非仅仅局限于工具理性批判,它通过有规定的否定达到了对现代启蒙当中现实权力因素的内在批判,它因此并没有彻底否定启蒙也没有重新树立新的乌托邦。对自然的回忆的拯救逻辑意味着思想必须对自身展开批判,以达到重新正视社会现实中的苦难现象,从而解构抽象主体的优先地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号