首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An effective process for recycling lead from hazardous waste cathode ray tubes(CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO_2–FeO–12wt%ZnO–3wt%Al_2O_3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO_2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO_2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared(FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO_2 mass ratio or increasing FeO content. The [FeO_6]-octahedra in the slag melt increase as the CaO/SiO_2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization(DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO_2 mass ratio and increasing FeO content.  相似文献   

2.
An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The[FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.  相似文献   

3.
We investigated the effect of Al2O3 content on the viscosity of CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3(mass ratio of CaO/SiO2 is 1.0,and Al2O3 content is 17wt%-29wt%)slags.The results show that the viscosity of the slag increases gradually with increases in the Al2O3 content in the range of 17wt%to 29wt%due to the role of Al2O3 as a network former in the polymerization of the aluminosilicate structure of the slag.With increases in the Al2O3 content from 17wt%to 29wt%,the apparent activation energy of the slags also increases from 180.85 to 210.23 kJ/mol,which is consistent with the variation in the critical temperature.The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al2O3.The application of Iida’s model for predicting the slag viscosity in the presence of Cr2O3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al2O3 content are at relatively low levels,i.e.,the temperature range of 1673 to 1803 K and the Al2O3 content range of 17wt%-29wt%in CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3 slag.  相似文献   

4.
We investigated the effect of Al_2O_3 content on the viscosity of CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 (mass ratio of CaO/SiO_2is 1.0,and Al_2O_3 content is 17wt%–29wt%) slags.The results show that the viscosity of the slag increases gradually with increases in the Al_2O_3content in the range of 17wt%to 29wt%due to the role of Al_2O_3 as a network former in the polymerization of the aluminosilicate structure of the slag.With increases in the Al_2O_3 content from 17wt%to 29wt%,the apparent activation energy of the slags also increases from 180.85 to 210.23 k J/mol,which is consistent with the variation in the critical temperature.The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al_2O_3.The application of Iida’s model for predicting the slag viscosity in the presence of Cr_2O_3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al_2O_3 content are at relatively low levels,i.e.,the temperature range of 1673 to 1803 K and the Al_2O_3 content range of 17wt%–29wt%in CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 slag.  相似文献   

5.
The effect of B2O3 addition on the aqueous tape casting, sintering, microstructure and microwave dielectric properties of Li2O-Nb2O5-TiO2 ceramics has been investigated. The tape casting slurries exhibit a typical shear-thinning behavior without thixotropy, but the addition of B2O3 increases the viscosity of the slurries significantly. It was found that doping of B2O3 can decrease the tensile strength, strain to failure and density of the green tapes. The sintering temperature could be lowed down to 900℃ with the addition of 2 wt% B2O3 due to the liquid phase effect. No secondary phase is observed. The addition of B2O3 does not induce much degradation on the microwave dielectric properties. Optimum microwave dielectric properties of εr 67, Q×f 6560 GHz are obtained for Li2O-Nb2O5-TiO2 ceramics containing 2 wt% B2O3 sintered at 900 1C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) application.  相似文献   

6.
Co–Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance. Therefore, these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components. Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys. However, the intricate interaction among elements considerably affects the oxidation resistance o...  相似文献   

7.
The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO–SiO_2–MgO–FeO–MnO–Al_2O_3–TiO_2–CaF_2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step(RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide(Mn O), the apparent activation energy of the demanganization reaction was estimated to be 189.46 k J·mol~(–1) in the current study, which indicated that the mass transfer of Mn O in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the specific reaction interface(SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.  相似文献   

8.
The as-cast Mg–6Li–4Zn-x Mn alloys were prepared and extruded at 280℃ with an extrusion ratio of 25:1. The effects of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn-x Mn alloys were investigated in this study. The XRD results show that Mg–6Li–4Zn–x Mn alloys consisted of α-Mg(hcp) + β-Li(bcc)duplex structured matrix, Mg Li2Zn and Mn phases. The grains of the extruded Mg–6Li–4Zn–x Mn alloys were refined by dynamic recrystallization during the extrusion process...  相似文献   

9.
B–Y modified silicide coatings were prepared on Nb–Si based alloy by pack cementation at 1300 ℃ for 10 h. The effect of Y_2O_3 content in the pack mixtures on microstructure and oxidation resistance of the coatings was investigated. The results show that the four coatings have similar structures, which possess a(Nb,X)Si_2 outer layer and a(Nb,X)_5Si_3 transitional layer. Y_2O_3 content in the pack mixtures has an obvious effect on the Si content in the coating. The mass gains of the coatings prepared with 0.5, 1, 2 and 3 wt% Y_2O_3 in pack mixtures are 2.33, 1.96, 2.05 and 2.86 mg/cm~2 after oxidation at 1250 ℃ for 100 h, respectively. The coating prepared with 1 wt% Y_2O_3 exhibits the best oxidation resistance due to the formation of a dense glass-like borosilicate scale.  相似文献   

10.
The effects of tempering holding time at 700°C on the morphology, mechanical properties, and behavior of nanoparticles in Ti–Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy. The equilibrium solid solution amounts of Mo, Ti, and C in ferritic steel at various temperatures were calculated, and changes in the sizes of nanoparticles over time at different Mo contents were analyzed. The experimental results and theoretical calculations were in good agreement with each other and showed that the size of nanoparticles in middle Mo content nano-ferrite(MNF) steel changed the least during aging. High Mo contents inhibited the maturation and growth of nanoparticles, but no obvious inhibitory effect was observed when the Mo content exceeded 0.37 wt%.The tensile strength and yield strength continuously decreased with the tempering time. Analysis of the strengthening and toughening mechanisms showed that the different mechanical properties among the three different Mo content experiment steels were mainly determined by grain refinement strengthening(the difference range was 30–40 MPa) and precipitation strengthening(the difference range was 78–127 MPa). MNF steel displayed an ideal chemical ratio and the highest thermodynamic stability, whereas low Mo content nano-ferrite(LNF) steel and high Mo content nano-ferrite(HNF) steel displayed relatively similar thermodynamic stabilities.  相似文献   

11.
xYb2O3–15(20Ni–Cu)/(85?x)(NiFe2O4–10NiO) (x=0, 0.25, 0.5, 0.75, 1.0, 2.0, and 10.0) cermets for aluminum electrolysis were prepared to investigate the effect of Yb2O3 doping on the grain boundary of the cermets after sintering. The results showed that each interface was very clear and that with increasing Yb2O3 content, most of the Yb was evenly distributed at the grain boundary. Moreover, according to the phase composition and microstructural analysis by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), and electron probe microanalysis (EPMA), YbFeO3 was produced along the grain boundary. The YbFeO3 was concluded to not only have formed from the interaction between the NiFe2O4 or Fe2O3 component and Yb2O3 at the grain boundary of the cermets, but also from the decomposition of NiFe2O4 into NiO and Fe2O3 and the subsequent reaction of Fe2O3 with Yb2O3. Thus, the pro-duction of YbFeO3 resulted in a cermet with high relative density, good electrical conductivity, and good corrosion resistance.  相似文献   

12.
In recent years, the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al–Si alloys. However, the effect of Ni on the wear behaviors of Al–Si alloys and Al matrix composites, particularly at elevated temperatures, remains an understudied area. In this study, Al–Si–Cu–Mg–Ni/20wt% SiC particles(SiCp) composites with varying Ni contents were prepared by using a semisolid stir casting method. The effect of Ni content on the dry sliding wear behavior ...  相似文献   

13.
High-quality SiO2 colloidal crystal multilayers were fabricated from ethanol solutions by the vertical deposition method and the effect of sintering on the optical properties of the samples was investigated. Optical properties,which are determined by the photonic band structure, weres tudied by means of light transmission and reflection measurements. The morphology of the samples was characterized by scanning electron microscopy (SEM). SEM images illustrate the ordered close package of the spherical colloids in planes parallel to the substrate surface. In addition, the sampie is crackless as a result of an appropriate drying rate. It is shown that with the increase of the sintering final temperature, though the depth and the width of the peak of Bragg diffraction of the sample vary vastly, the peak produces few blue shifts. Optical measurement results were compared favorably to the microstructural properties of the colloidal crystal multilayers.  相似文献   

14.
The addition of silica to steelmaking slags to decrease the binary basicity can promote phosphate enrichment in quenched slag samples. In this study, we experimentally investigated phosphate enrichment behavior in CaO–SiO2–FeO–Fe2O3–P2O5 slags with a P2O5 content of 5.00% and the binary basicity B ranging from 1.0 to 2.0, where the (%FetO)/(%CaO) mass percentage ratio was maintained at 0.955. The experimental results are explained by the defined enrichment degree RC2S-C3P of solid solution 2CaO·SiO2–3CaO·P2O5 (C2S–C3P), where RC2S-C3P is a component of the developed ion and molecule coexistence theory (IMCT)–Ni model for calculating the mass action concentrations Ni of structural units in the slags on the basis of the IMCT. The asymmetrically inverse V-shaped relation between phosphate enrichment and binary basicity B was observed to be correlated in the slags under applied two-stage cooling conditions. The maximum content of P2O5 in the C2S–C3P solid solution reached approximately 30.0% when the binary basicity B was controlled at 1.3.  相似文献   

15.
CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior,microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from1250 1C to 1050 1C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3ceramic sintered at 1100 1C presented good microwave dielectric properties of εr?7.27,Q f?16,850 GHz and τf? 39.53 ppm/1C, which is much better than those of pure CaSiO3 ceramic sintered at 1340oC(Q f?13,109 GHz).The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

16.
The main objective of the study was to control the degradation rate of material at a higher degradation rate improving the chemical stability of the material. Ta is known to have good chemical resistance, biocompatibility and show no adverse biological response. In the present study, SiO2–Na2O–CaO–P2O5 bioceramics with different Ta2O5 contents was prepared by solid state sintering method at 1000 °C. The as-sintered ceramics were subjected to immersion studies in stimulated body fluid (SBF) for 21 days under static condition and characterized by XRD, FTIR, SEM, and AAS. The findings of the research indicate that the addition of Ta2O5 controlled degradability, and all samples showed sufficient bioactivity.  相似文献   

17.
Recent years see an increasing interest in nanocomposites synthesized by a sol-gel procedure consisting of magnetic nanosized particles embedded in a silica matrix. due to their specific physical and chemical properties[1―4]. Sol-gel derived amorphous si…  相似文献   

18.
In order to remediate heavy metal ions from waste water,Al2O3–SiO2 composite aerogels are prepared via a sol–gel and an organic solvent sublimation drying method.Various characterisation techniques have been employed including X-ray diffraction(XRD),Fourier transform infrared spectrometry(FTIR),scanning electron microscope(SEM),Energy-dispersion X-ray spectroscopy(EDX),Brunauer–Emmett–Teller(BET)N2 adsoprtion isotherm,and atomic absorption spectrometer(AAS).XRD and FTIR suggest that the aerogels are composed of mainly Al2O3 and minor SiO2.They have a high specific surface area(827.544 m^2/g)and high porosity(86.0%)with a pore diameter of~20 nm.Their microstructures show that the distribution of Al,Si,and O is homogeneous.The aerogels can remove~99%Cu^2+within~40 min and then reach the equilibrium uptake(~69 mg/g).Preliminary calculations show that the Cu2+uptake by the aerogels follows pseudo second-order kinetics where chemical sorption may take effect owing largely to the high surface area,high porosity,and abundant functional groups,such as Al–OH and Si–OH,in the aerogel network.The prepared aerogels may serve as efficient absorbents for Cu^2+removal.  相似文献   

19.
We demonstrate a synthesis method to broaden the range of SiO2/Al2O3 ratio (30-100) of high-silica MCM-22 zeolites by prolonging the aging time of the gel before the crystallization. The synthesis conditions such as silica sources, chemical compositions of initial gel and aging time of gel were investigated in detail.High quality MCM-22 products with various morphologies have been synthesized by optimize their synthesis conditions.Our results show that increasing of the aging time can make the gel be homogenization and promote their nucleus formation,which may avoid the formation of impurity phase and thus broaden the range of SiO2/Al2O3 ratio.  相似文献   

20.
Ti3SiC2 has the potential to replace graphite as reinforcing particles in Cu matrix composites for applications in brush,electrical contacts and electrode materials.In this paper the fabrication of Cu-Ti3SiC2 metal matrix composites prepared by warm compaction powder metallurgy forming and spark plasma sintering(SPS) was studied.The stability of Ti3SiC2 at different sintering temperatures was also studied.The present experimental results indicate that the reinforcing particles in Cu-Ti3SiC2 composites are not stable at and above 800℃.The decomposition of Ti3SiC2 will lead to the formation of TiC and/or other carbides and TiSi2.If purity is the major concern,the processing and servicing temperatures of the Cu-Ti3SiC2 composite should be limited to 750℃ or lower.The composites prepared by warm compaction forming and SPS sintering at 750℃ have lower density when compared with the composites prepared by SPS sintering at 950℃,but their electrical resistivity values are very close to each other and even lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号