首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研制了一种自保护高铬铸铁型药芯焊丝,对其堆焊金属组织与性能进行了分析,结果表明:堆焊金属表面硬度达到HRC60以上,堆焊金属显微组织主要为马氏体+残余奥氏体+M1C3,型碳化物;初生碳化物主要沿堆焊层向母材方向生长,其表面硬度为HVl783,侧面为HVll27:共晶碳化物围绕在初生碳化物周围生长,其显微硬度为HV830:在相同磨损条件下磨损1h后,堆焊金属相对耐磨性为Q235钢的14倍左右,在药芯中加入适量的稀土氧化物能提高堆焊金属的耐磨性.  相似文献   

2.
研究电渣重熔过程冷却强度对含镁H13钢凝固组织和碳化物偏析的影响.采用光学显微镜、扫描电镜、透射电镜、X射线衍射仪等分析凝固组织及碳化物的特征.研究发现,钢锭的凝固组织均为马氏体组织、残余奥氏体及一次碳化物.H13钢电渣锭中主要析出的一次碳化物为V8C7、MC、M23 C6及M6C.随着冷却强度增加,电渣锭边部碳化物的尺寸减小且分布更加均匀,但是碳化物的类型不发生变化.电渣重熔过程中冷却强度增加促进钢中镁对夹杂物的变性能力,经过镁变性后生成的MgO· Al2O3为TiN的析出提供形核质点,MgO· Al2 O3和TiN的复合夹杂物能够促进一次碳化物异质形核,从而细化一次碳化物.  相似文献   

3.
利用Thermo-Calc软件对8Cr13MoV马氏体不锈钢的凝固过程进行计算,利用光学显微镜、扫描电子显微镜和X射线衍射分析仪对铸态组织和碳化物形貌以及类型进行观察与分析,利用Gleeble热模拟试验机测定材料的静态连续冷却转变曲线.结果表明,8Cr13MoV在平衡凝固条件下组织为铁素体和M23 C6型碳化物,而在实际的凝固条件下,组织为铁素体、马氏体、残余奥氏体、M7 C3型和M23 C6型碳化物,由于偏析导致最终组织中碳化物以M7 C3型为主,少量M23 C6以薄片或树枝状分布在晶界上.由于较高的C和Cr含量,以0.1℃·s-1的冷却速率冷却时,奥氏体也会发生马氏体转变.  相似文献   

4.
The microstructure and the stability of carbides after heat treatments in an H23 tool steel were investigated. The heat treatments consisted of austenization at two different austenizing temperatures (1100℃ and 1250℃), followed by water quenching and double-aging at 650℃, 750℃, and 800℃ with air cooling between the first and second aging treatments. Martensite did not form in the as-quenched microstructures, which consisted of a ferrite matrix, M6C, M7C3, and MC carbides. The double-aged microstructures consisted of a ferrite matrix and MC, M6C, M7C3, and M23C6 carbides. Secondary hardening as a consequence of secondary precipitation of fine M2C carbides did not occur. There was disagreement between the experimental microstructure and the results of thermodynamic calculations. The highest double-aged hardness of the H23 tool steel was 448 HV after austenization at 1250℃ and double-aging at 650℃, which suggested that this tool steel should be used at temperatures below 650℃.  相似文献   

5.
Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facilitates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the formation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener’s equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro-structural evolution and hardness variation, the process of tempering can be separated into three steps.  相似文献   

6.
长期高温时效12Cr1MoV钢中碳化物组织结构   总被引:5,自引:0,他引:5  
12Cr1MdV低合金耐热钢在540℃运行20万h后,材料中碳化物的组织结构发生显著变化.研究结果表明:材料中大量的碳化物沿晶界析出并聚集粗化,析出的碳化物主要为M23C6,同时存在少量的M6C,碳化物的沿晶界析出及其粗化是材料结构和性能发生恶化的主要原因;弥散的细小的富Ⅴ碳化物MC(V4C3)在铁素体晶体内沉淀析出,有助于12cr1MoV低合金耐热钢的性能和组织结构的稳定;珠光体组织中Fe3C发生球化和分解,但无明显聚集长大,并由原先的M3C型分解转变为MC型.  相似文献   

7.
采用Thermo-Calc热力学计算软件,对T122铁素体耐热钢钒含量变化对平衡析出相及A3、A4点的影响进行了研究.结果表明,T122钢的主要平衡析出相为M23C6、MX和Laves相.当钒质量分数在0.15%以下时,将析出极少量的Z相,且其随着钒含量的增加析出量呈直线下降;当钒质量分数在0.28%以上时,将析出两种不同的MX相,随着钒含量的增加MN相的比例下降,而M(C,N)相的比例增加.钒含量的变化对M23C6和Laves相的影响甚小.钒作为封闭奥氏体元素,增加钒含量,铁素体与奥氏体的转变区域将变小.  相似文献   

8.
利用EPMA与XRD等实验方法对航空轴承钢在渗碳热处理过程中的微观组织演变行为进行定性及定量分析.结果表明:在渗碳淬火处理后,试样表层及次表层组织中有大量的碳化物及少量的残留奥氏体,其中碳化物为M23C6和M6C.随着渗层深度的增加,碳化物含量减少,残留奥氏体含量增加.经过二次淬火处理后,奥氏体与马氏体中碳质量分数增加,使得淬火后残留奥氏体质量分数大幅度增加,在渗层0.1mm处达到22.7%.经过两次深冷与回火处理后,马氏体与奥氏体中碳质量分数降低,碳化物含量增加,渗层硬度提升.  相似文献   

9.
通过比较高碳高锰钢液淬和变质处理的组织,分析了高锰钢中碳化物的形成及其形态,指出碳化物的形成、形态和分布与冷却速度和微量元素的分布有密切关系.Si-Ca变质可以改善碳化物形态和分布,其原因是变质剂的加入,降低了微量活性元素硫在碳化物及奥氏体晶界上的分布含量.同时St-Ca的变质也抑制了固态碳化物的针状脱溶析出,使碳化物保持了团粒状,提高了高锰钢的性能.  相似文献   

10.
The tempering stability of three Fe-Cr-Mo-W-V hot forging die steels (DM, H21, and H13) was investigated through hardness measurements and transmission electron microscopy (TEM) observations. Both dilatometer tests and TEM observations revealed that DM steel has a higher tempering stability than H21 and H13 steels because of its substantial amount of M2C (M represents metallic element) carbide precipitations. The activation energies of the M2C carbide precipitation processes in DM, H21, and H13 steels are 236.4, 212.0, and 228.9 kJ/mol, respectively. Furthermore, the results indicated that vanadium atoms both increase the activation energy and affect the evolution of M2C carbides, resulting in gradual dissolution rather than over-aging during tempering.  相似文献   

11.
研究了合金成分和热处理制度对K648合金组织中仪α-Cr相析出形态和力学性能的影响,并通过Thermo-calc软件计算了K648合金平衡相析出规律.计算结果表明合金中的析出相主要为α-Cr、γ^1相和M23c6碳化物.通过实际组织观察得出合金中α-cr相的析出形态对cr含量和热处理工艺制度极为敏感,具体表现为α-Cr相形态的多样性.力学性能测试进一步表明合金的室温拉伸性能、冲击性能均受α-Cr相形态和分布的影响,即合金性能表现出组织敏感性.  相似文献   

12.
Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%–10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.  相似文献   

13.
The precipitates in P92 steel after long-term service in an ultra-supercritical unit were investigated by field-emission scanning electron microscopy and transmission electron microscopy and were found to mainly consist of M23C6 carbides, Laves phase, and MX carbonitrides. No Z-phase was observed. M23C6 carbides and Laves phase were found not only on prior austenite grain boundaries, martensite lath boundaries, and subgrain boundaries but also in lath interiors, where two types of MX carbonitrides—Nb-rich and V-rich particles—were also observed but the “winged” complexes were hardly found. Each kind of precipitate within the martensite laths exhibited multifarious morphologies, suggesting that a morphological change of precipitates occurred during long-term service. The M23C6 carbides and Laves phase coarsened substantially, and the latter grew faster than the former. However, MX carbonitrides exhibited a relatively low coarsening rate. The effect of the evolution of the precipitate phases on the creep rupture strength of P92 steel was discussed.  相似文献   

14.
采用常规铸造和喷射成形工艺分别制备了M3型高速钢铸坯和沉积坯.利用扫描电子显微镜、X射线能谱和X射线衍射等分析方法对冷却速度对合金的显微组织的影响,加热温度对M3高速钢中M2C共晶碳化物分解行为的影响,以及热加工变形后铸态和沉积态组织的变化进行了研究.结果表明:铸态合金含有粗大的一次枝晶和M2C共晶碳化物,而喷射成形沉积坯主要为等轴晶且碳化物细小均匀;冷却速度的提高极大地抑制了碳化物的析出和晶粒长大;加热温度的提高有利于M2C共晶碳化物分解,过高的温度使得分解后的M6C长大,不利于合金性能的提高;沉积坯经恰当的预热处理和热变形可以获得理想的变形组织.  相似文献   

15.
The effects of aging temperature and time on the hardness and impact toughness of a copper-bearing high-strength low-carbon steel were investigated. The hardness of the aged samples reached maxima after 1 h and 5 h of aging at 500 and 450℃, respectively; this increase in hardness was followed by a decrease in hardness until a temperature of 700℃, at which secondary hardening was observed. The impact toughness of the aged steel was found to be higher for 5 h of aging. Transmission electron microscopy confirmed the presence of carbide and copper precipitates; also, the secondary hardening could be the result of the transformation of austenite (formed in the aging treatment) to martensite. Differential scanning calorimetry of the steel was performed to better understand the precipitation behavior. The results revealed that the precipitation of the steel exhibited two significant stages of copper precipitate nucleation and coarsening of the precipitates, with corresponding activation energies of 49 and 238 kJ·mol-1, respectively.  相似文献   

16.
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic (RAFM) steels. High-angle grain boundaries, subgrain boundaries, nano-sized M23C6, and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength. M23C6 carbides are easily coarsened under high temperatures, thereby weakening their ability to block dislocations. Creep properties are improved through the reduction of M23C6 carbides. Thus, the loss of strength must be compensated by other strengthening mechanisms. This review also outlines the recent progress in the development of RAFM steels. Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength. Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel. The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries. This procedure increases the creep life of TMT(thermo-mechanical treatment) 9Cr–1W–0.06Ta steel by ~20 times compared with those of F82H and Eurofer 97 steels under 550°C/260 MPa.  相似文献   

17.
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-flat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.  相似文献   

18.
通过高温淬火试验观察试验钢奥氏体晶粒尺寸的变化情况.结合金相和TEM观察、显微硬度和第二相粒子的溶解度积公式分析了加热温度和保温时间对试验钢奥氏体晶粒粗化温度、第二相粒子的溶解情况以及显微硬度值的影响.结果表明:试验钢的奥氏体粗化温度在1200℃附近.当加热温度低于1200℃时,大量细小的第二相粒子阻碍奥氏体晶粒粗化;当加热温度高于1200℃时,细小的第二相粒子溶解,奥氏体晶粒出现异常长大.确定试验钢的合理加热温度为1150~1200℃,在此范围内可获得淬火组织的显微硬度值低于HV330.  相似文献   

19.
采用X射线衍射、金相分析、硬度测定等方法研究了锰钒高铬铸铁经深冷处理后的硬化行为和硬化机理.结果表明,锰钒高铬铸铁在亚临界处理(400~650℃)后再深冷处理的过程中,硬度先升高后下降,其整体硬度显著高于未经深冷处理的试样.显微组织分析表明,深冷处理使锰钒高铬铸铁的残余奥氏体含量下降,马氏体含量增多,同时析出了大量的细...  相似文献   

20.
A new directionally solidified Ni-based superalloy DZ24, which is a modification of K24 alloy without rare and expensive elemental additions, such as Ta and Hf, was studied in this paper. The microstructure and stress rupture properties of conventionally cast and directionally solidified superalloys were comparatively analyzed. It is indicated that the microstructure of K24 alloy is composed of γ, γ′, γ/γ′ eutectics and MC carbides. Compared with the microstructure of K24 polycrystalline alloy, γ/γ′ eutectic completely dissolves into the γ matrix, the fine and regular γ′ phase reprecipitates, and MC carbides decompose to M6C/M23C6 carbides after heat treatment in DZ24 alloy. The rupture life of DZ24 alloy is two times longer than that of K24 alloy. The more homogeneous the size of γ′ precipitate, the longer the rupture life. The coarsening and rafting behaviors of γ′ precipitates are observed in DZ24 alloy after the stress-rupture test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号