首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870℃ for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850℃, where grains with a diameter ≤ 500 nm accounted for 30% and those with a diameter >0.5 μm accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.  相似文献   

2.
The effects of the welding current mode in resistance spot welding on the microstructure and mechanical properties of advanced high-strength steel dual-phase 590 (DP590) sheets were investigated. Results showed that a rough martensitic structure was formed in the weld zone of the sample welded via the single-pulsed mode, whereas the microstructure in the heat-affected zone consisted of a very rough martensitic microstructure and rough ferrite. However, using the secondary pulse mode led to the formation of tempered martensite in the weld zone. The maximum load and the energy absorption to failure of the samples with the secondary pulsed cycle were higher than those of the samples with the single-pulsed mode. Tensile shear results indicated that the secondary pulsed mode could significantly change the mode of failure upon shear tension testing. Therefore, the obtained results suggest that the use of secondary pulsed mode can improve the microstructural feature and mechanical properties of advanced high-strength steel DP590 welds.  相似文献   

3.
A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Gleeble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical properties and microstructures of the DP steel were investigated by mechanical testing and microstructure observation. The results show that soaking between 760 and 820℃ for more than 80 s, rapid cooling at the rate of more than 30℃/s from the quenching temperature between 620 and 680℃, and overaging lower than 300℃ are beneficial for the mechanical properties of DP steels. An appropriate proportion of the two phases is one of the key factors for the favorable properties of DP steels. If the volume fraction of martensite and, thereby, free dislocations are deficient, the tensile strength and n value of DP steels will decrease, whereas, the yield strength will increase. But if the volume fraction of martensite is excessive to make it become a dominant phase, the yield and tensile strength will increase, whereas, the elongation will decrease obviously. When rapid cooling rate is not fast enough, pearlite or cementite will appear, which will degrade the mechanical properties. Even though martensite is sufficient, if it is decomposed in high temperature tempering, the properties will he unsatisfied.  相似文献   

4.
The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the microstructure was mainly the laths of bainite in the as-quenched steel. The bainitic laths were restored and combined after the steel tempered at various temperatures. There were rnartensite/austenite (M/A) islands and numerous dislocations within and between the bainitic laths, while very t-me precipitates of ε-Cu were also observed within the laths. With increasing the tempered temperature from 400 to 600℃, the yield strength (YS) increased from 877 to 957 MPa, whereas the ultimate tensile strength (UTS) decreased from 1020 to 985 MPa. The Charpy V-notch (CVN) varied from 68.5 to 42 J, and the value was minimal for the steel tempered at 500℃.  相似文献   

5.
The mechanical properties and wear resistance of the ultrafine bainitic steel austempered at various temperatures were investigated. Scanning electron microscopy (SEM) and X-ray diffraction were used to analyze the microstructure. The worn surfaces were observed via laser scanning confocal microscopy and SEM. Results indicated that, under low austempering temperatures, the mechanical properties differed, and the wear resistance remained basically unchanged. The tensile strength of the samples was above 1800 MPa, but only one sample austempered at 230°C had an elongation of more than 10%. The weight loss of samples was approximately linear with the cycles of wear and nonlinear with the loads. The samples showed little difference in wear resistance at different isothermal temperatures, whereas the thickness of their deformed layers varied greatly. The results are related to the initial hardness of the sample and the stability of the retained austenite. Meanwhile, the experimental results showed that the effect of austempering temperature on the wear resistance of ultrafine bainitic steel can be neglected under low applied loads and low austempering temperature.  相似文献   

6.
The mechanical properties and wear resistance of the ultrafine bainitic steel austempered at various temperatures were investigated.Scanning electron microscopy(SEM) and X-ray diffraction were used to analyze the microstructure. The worn surfaces were observed via laser scanning confocal microscopy and SEM. Results indicated that, under low austempering temperatures, the mechanical properties differed, and the wear resistance remained basically unchanged. The tensile strength of the samples was above 1800 MPa, but only one sample austempered at 230°C had an elongation of more than 10%. The weight loss of samples was approximately linear with the cycles of wear and nonlinear with the loads. The samples showed little difference in wear resistance at different isothermal temperatures, whereas the thickness of their deformed layers varied greatly. The results are related to the initial hardness of the sample and the stability of the retained austenite. Meanwhile, the experimental results showed that the effect of austempering temperature on the wear resistance of ultrafine bainitic steel can be neglected under low applied loads and low austempering temperature.  相似文献   

7.
Thermomechanical cyclic quenching and tempering (TMCT) can strengthen steels through a grain size reduction mechanism. The effect of TMCT on microstructure, mechanical, and electrochemical properties of AISI 1345 steel was investigated. Steel samples heated to 1050°C, rolled, quenched to room temperature, and subjected to various cyclic quenching and tempering heat treatments were named TMCT-1, TMCT-2, and TMCT-3 samples, respectively. Microstructure analysis revealed that microstructures of all the treated samples contained packets and blocks of well-refined lath-shaped martensite and retained austenite phases with varying grain sizes (2.8–7.9 μm). Among all the tested samples, TMCT-3 sample offered an optimum combination of properties by showing an improvement of 40% in tensile strength and reduced 34% elongation compared with the non-treated sample. Nanoindentation results were in good agreement with mechanical tests as the TMCT-3 sample exhibited a 51% improvement in indentation hardness with almost identical reduced elastic modulus compared with the non-treated sample. The electrochemical properties were analyzed in 0.1 M NaHCO3 solution by potentiodynamic polarization and electrochemical impedance spectroscopy. As a result of TMCT, the minimum corrosion rate was 0.272 mm/a, which was twenty times less than that of the non-treated sample. The impedance results showed the barrier film mechanism, which was confirmed by the polarization results as the current density decreased.  相似文献   

8.
The effects of annealing temperature(with the annealing time being constant at 1 h) on the microstructure, ordering, residual stress, mechanical properties, and subsequent cold rolling workability of Fe?6.5wt%Si electrical steel with columnar grains were investigated, where the steel was warm rolled at 500°C with a reduction of 95%. The results show that recrystallization began to occur in the sample annealed at 575°C and that full recrystallization occurred in the sample annealed at 625°C. When the annealing temperature was 500°C or greater, the extent of reordering in the sample was high, which reduced the room-temperature plasticity. However, annealing at temperatures below 300°C did not significantly reduce the residual tensile stress on the edge of the warm rolled samples. Considering the comprehensive effects of annealing temperature on the recrystallization, reordering, residual stress, and mechanical properties of the warm rolled Fe?6.5wt%Si electrical steel with columnar grains, the appropriate annealing temperature range is 300°C?400°C. Unlike the serious edge cracks that appeared in the sample after direct cold rolling, the annealed samples could be cold rolled to a total reduction of more than 71.4% without the formation of obvious edge cracks, and bright-surface Fe?6.5wt%Si electrical steel strips with a thickness less than 0.1 mm could be fabricated by cold rolling.  相似文献   

9.
Two types of ultralow carbon steel weld metals(with and without added Cu-Nb) were prepared using gas metal arc welding(GMAW) to investigate the correlation between the microstructure and mechanical properties of weld metals.The results of microstructure characterization showed that the weld metal without Cu-Nb was mainly composed of acicular ferrite(AF), lath bainite(LB), and granular bainite(GB).In contrast, adding Cu-Nb to the weld metal caused an evident transformation of martensite and grain coarsening.Both weld metals had a high tensile strength(more than 950 MPa) and more than 17% elongation; however, their values of toughness deviated greatly,with a difference of approximately 40 J at-50℃.Analysis of the morphologies of the fracture surfaces and secondary cracks further revealed the correlation between the microstructure and mechanical properties.The effects of adding Cu and Nb on the microstructure and mechanical properties of the weld metal are discussed; the indication is that adding Cu-Nb increases the hardenability and grain size of the weld metal and thus deteriorates the toughness.  相似文献   

10.
Low-carbon steel plates were successfully subjected to normal friction stir processing(NFSP) in air and submerged friction stir processing(SFSP) under water, and the microstructure, mechanical properties, and corrosion behavior of the NFSP and SFSP samples were investigated. Phase transformation and dynamic recrystallization resulted in fine-grained ferrite and martensite in the processed zone. The SFSP samples had smaller ferrites(5.1 μm), finer martensite laths(557 nm), and more uniform distribution of martensite compared to the NFSP samples. Compared to the base material(BM), the microhardness of the NFSP and SFSP samples increased by 19.8% and 27.1%, respectively because of the combined strengthening effects of grain refinement, phase transformation, and dislocation. The ultimate tensile strengths(UTSs) of the NFSP and SFSP samples increased by 27.1% and 38.7%, respectively. Grain refinement and martensite transformation also improved the electrochemical corrosion properties of the low-carbon steel. Overall, the SFSP samples had better mechanical properties and electrochemical corrosion resistance than the NFSP samples.  相似文献   

11.
采用Thermo-Calc热力学模拟计算与实验相结合的方法,优化设计了一种V、Ta微合金化的低活性F/M钢12Cr3WVTa,经1 050℃水淬及780℃回火后对其显微组织及析出相进行光学显微镜、扫描电镜和透射电镜观察以及能谱分析.实验钢淬火回火后显微组织由回火马氏体和少量δ铁素体相组成,析出相主要为M23C6和MX相(M=V,Ta;X=C,N),其中M23C6主要分布于回火马氏体板条界和相界,而MX弥散析出于回火马氏体板条内以及δ铁素体内.实验钢室温和高温(600℃)拉伸力学性能良好,600℃下材料抗拉强度为507 MPa,屈服强度为402 MPa,满足超临界水冷堆用包壳管的拉伸性能要求.  相似文献   

12.
利用光学显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)及电子探针(EPMA)等手段,系统研究了不同回火温度下9%Cr马氏体耐热钢的组织及力学性能变化.结果表明:回火后位错网络化、析出相形态、板条马氏体破碎化等是影响力学性能变化的主要因素.正火并760℃回火后在室温和550℃条件下抗拉强度分别达到657和556MPa,0℃冲击功达到285J,此回火温度下实验钢具有最佳综合力学性能.700, 820,850℃回火,韧性大幅降低.高温服役条件下不发生粗化的MX相弥散分布在铁素体和马氏体中,与马氏体高温回复形成的亚稳态多边形结构有效提升耐热钢抗高温蠕变性能.  相似文献   

13.
 通过热处理工艺试验研究了38CrMoAlA钢不同淬火温度、冷却方式和回火温度对38CrMoAlA钢微观组织及力学性能的影响。结果表明,在900—1000℃淬火温度范围内,淬火温度对该钢的力学性能影响不大。不同的冷却方式因淬火介质的冷却强度不同,导致淬火后的组织不同,从而影响该钢的力学性能。回火温度对该钢的力学性能的影响较为显著,100—400℃范围内回火表现出回火脆性,在620℃回火能得到较好的强韧配合。该钢采用940℃,1h,油冷620℃,5h,油冷的热处理工艺时,可获得适宜的力学性能。  相似文献   

14.
 S280 是一种超高强度不锈钢, 采用低碳马氏体相变强化和时效强化叠加, 靠析出强化获得所需的强度。使用状态下的基体组织为低碳板条马氏体, 主要强化相为Fe2Mo 等, 抗拉强度σb为1920~1930 MPa, 断裂韧度KIC为95~100 MPa √m, 具有比300M 和AerMet100 更好的耐腐蚀性能, 主要用于抗腐蚀性能要求高的超高强度构件。  相似文献   

15.
研究了C--Mn--Mo--Cu--Nb--Ti--B系低碳微合金钢915℃淬火和490~640℃回火的调质工艺对钢的组织及力学性能的影响.用扫描电镜和透射电镜对实验钢的组织、析出物形态和分布以及断口形貌进行观察,采用X射线衍射仪分析钢中残余奥氏体的体积分数.结果表明:调质后,实验钢获得贝氏体、少量马氏体及残余奥氏体复相组织,贝氏体板条宽度只有250 nm,残余奥氏体的体积分数随着回火温度的升高而降低,经淬火与520℃回火后残余奥氏体的体积分数为2.1%.调质后析出物的数量激增,6~15 nm的析出物占70%以上.实验钢经过915℃淬火与520℃回火后,其屈服强度达到915 MPa,抗拉强度990 MPa,-40℃冲击功为95 J.细小的析出物及窄的板条提高了钢的强度.板条间有残余奥氏体存在,改善了实验钢的韧性.  相似文献   

16.
采用力学性能测试、金相组织观察、透射电镜以及扫描电镜观察,研究不同回火温度对超深井用超高强高韧套管组织和力学性能的影响规律。研究结果表明:套管经580~700℃回火的组织均为回火索氏体,在580~630℃回火时组织比较稳定,仍然保持着淬火马氏体的位向和形状,在640℃回火时发生铁素体再结晶,在700℃回火时发生组织粗化;与热轧态相比,淬火回火后的塑性和韧性得到了很大提高,在580~700℃回火,未出现第二类回火脆性;随着回火温度的升高,套管的强度和硬度逐渐降低,塑性和韧性逐渐增加;650℃为套管最佳回火温度,回火组织均匀,铁素体再结晶充分,碳化物细小弥散分布,强度达到V150钢级,0℃时横向冲击功接近110 J,强韧性匹配达到最佳。  相似文献   

17.
利用光学显微镜、扫描电镜、透射电镜和力学性能试验机等手段,系统研究了不同回火温度下低碳贝氏体高强度钢的组织及力学性能变化.结果表明:回火后位错密度的变化、析出相的形态、板条贝氏体的合并粗化和M/A岛的分解是导致力学性能变化的主要原因.600℃回火后屈服强度较热轧态强度提高了35MPa,-40℃冲击功提高了49J,此回火温度下实验钢具有最佳的强韧性配合.回火后低碳贝氏体高强度钢韧性改善主要是由于粗大M/A岛的分解,细小弥散分布的M/A岛可有效阻止裂纹扩展,改善低温冲击韧性.  相似文献   

18.
利用扫描电镜(SEM)、透射电镜(TEM)对Nb-Ti微合金化热成形钢的微观组织进行观察,采用Kahn撕裂试验对其韧性和撕裂性能进行了研究,并利用Thermo-Calc热力学软件对其析出行为和析出粒子成分进行分析计算.结果表明,含碳质量分数0.13%的热成形钢在Nb-Ti微合金化后的组织为马氏体,和传统热成形钢(22MnB5)相比其奥氏体晶粒、板条块和板条束都得到细化,并且其抗拉强度达到1500 MPa以上,撕裂强度和单位面积裂纹扩展能分别达到1878 MPa、436 kN·m-1.在950℃奥氏体化时,Nb-Ti合金元素几乎全部以析出粒子形式存在,能有效阻止奥氏体晶粒长大.另外在基体中主要存在两种析出物,一种是尺寸在100~200 nm的Ti(C,N);另一种是纳米级别的钛铌复合碳氮化物,能有效强化基体,提高强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号