共查询到20条相似文献,搜索用时 62 毫秒
1.
提出了一种新的基于双重采样的选择性集成学习算法。针对集成学习要求学习器个体的差异性分布在样本空间的不同部分,对得到的聚类个体学习器输出进行重采样,以此来计算聚类个体的差异性。针对集成学习要求得到的个体学习器具有一定的精确性,对所有得到的学习器个体集合进行重采样来评估聚类个体精确性。在此基础上选择出集成学习所需的个体集合。以谱聚类算法作为基学习器,用聚类集成策略部分解决了谱聚类算法存在的尺度参数敏感问题,在UCI数据集上的仿真实验验证了算法的有效性。 相似文献
2.
针对不平衡数据集的低分类准确性,提出基于蚁群聚类改进的SMOTE不平衡数据过采样算法ACC-SMOTE.一方面利用改进的蚁群聚类算法将少数类样本划分为不同的子簇,充分考虑类间与类内数据的不平衡,根据子簇所占样本的比例运用SMOTE算法进行过采样,从而降低类内数据的不平衡度;另一方面对过采样后的少数类样本采用Tomek ... 相似文献
3.
基于支持向量机的不平衡数据分类的改进欠采样方法 总被引:3,自引:0,他引:3
支持向量机作为一种有监督分类算法,具有小样本,非线性等独特优势,但其在处理不平衡数据分类时效果不够理想.欠采样是一类常用的数据重构方法,它被广泛用于解决不平衡数据的分类问题,然而,传统的随机欠采样方法受随机性影响,稳定性较差.提出一种改进的欠采样方法,并应用在支持向量机上进行分类对比实验.实验结果表明,相比传统随机欠采样方法,该方法的稳定性更好,且在许多情况下可以提高支持向量机对不平衡数据的分类性能. 相似文献
4.
传统的K-最邻近(K Nearest Neighbor,KNN)分类算法在处理不均衡样本数据时,其分类器预测倾向于多数类,少数类分类误差大。针对此问题从数据层的角度改进了传统的KNN算法。先通过K-means聚类算法将少数类样本聚类分组,将每个聚类内的样本作为遗传算法的初始种群;再使用遗传交叉和变异操作获取新样本,并进行有效性验证。最终获取到各类别样本数量基本均衡的训练样本集合。实验结果表明此方法有效改善了KNN算法对少数类分类效果。此法同时适用于其他关注少数类分类精度的不均衡数据集分类问题。 相似文献
5.
针对非平衡数据集的分类问题,本文提出在欠采样法的基础上使用分类集群的改进方法,以提高非平衡数据集中对少数类的分类的正确率。通过实验表明,该方法可行有效。 相似文献
6.
聚类集成是集成学习中的一个重要分支,其目标是解决无监督聚类分析中聚类算法的选择性、偏差性与数据特殊性等导致聚类结果不理想的问题。文章提出了一种基于数据关联的聚类集成方法(CEBDR),该算法先提取出在聚类成员中体现有关联关系的数据对象来组成新的类,然后对这些类进行二次聚类得到最终的集成结果。文中选用了一些标准数据集,采用CEBDR算法、已有的基聚类和聚类集成算法来进行对比实验,实验结果表明,该算法能够有效地提高聚类质量。 相似文献
7.
针对谱聚类算法对尺度参数敏感的问题,利用集成学习算法良好的鲁棒性和泛化能力,提出了一种无监督集成学习算法——谱聚类集成算法.该算法先利用谱聚类的内在特性产生集成学习所需的多个聚类个体,再采用Hungarian算法对生成的聚类个体进行重新标记,计算每个样本点关于每一个类别所占的比例,得到一个成分向量,然后运用对数比变换将所得的成分向量映射到另一个空间,去除成分数据的不适定性,最后对映射后的数据进行聚类,从而得到最终的集成结果.通过对UCI数据集和纹理图像的仿真实验表明,所提算法的聚类准确率与常用的共识函数具有一定的可比性,且运算代价较小,所需时间大约为MCLA算法的一半,同时避免了精确选择谱聚类算法的尺度参数. 相似文献
8.
不均衡数据分类算法的综述 总被引:2,自引:1,他引:2
传统的分类方法都是建立在类分布大致平衡这一假设基础上的,然而实际情况中,数据往往都是不均衡的.因此,传统分类器分类性能通常比较有限.从数据层面和算法层面对国内外分类算法做了详细而系统的概述.并通过仿真实验,比较了多种不平衡分类算法在6个不同数据集上的分类性能,发现改进的分类算法在整体性能上得到不同程度的提高,最后列出了不均衡数据分类发展还需解决的一些问题. 相似文献
9.
基于聚类算法的选择性神经网络集成 总被引:11,自引:0,他引:11
为了提高集成个体的差异度,提出了一种利用聚类算法去除冗余个体的选择性集成方法,该方法通过使用神经网络作为基学习器,并在多值分类数据集上进行实验.结果表明,该技术计算效率高,精度与稳健性也与基于遗传算法的选择性集成方法相当甚至占优. 相似文献
10.
聚类集成的目的是通过集成多个不同的基聚类来生成一个更好的聚类结果,近年来研究者已经提出多个聚类集成算法,但是目前仍存在的局限性是这些算法大多把每个基聚类和每个簇都视为同等重要,使聚类结果很容易受到低质量基聚类和簇的影响.为解决这个问题,研究者提出一些给基聚类加权的方法,但大多把基聚类看作一个整体而忽视其中每个簇的差异.... 相似文献
11.
为解决不均衡多分类问题,提出一种特征选择和AdaBoost的集成方法。首先,数据进行预处理。利用WSPSO算法进行特征选择,根据特征重要性选取初始粒子构建初始种群,使得算法初期就可以沿着正确的搜索方向开展,减少不相关特征的影响。其次,利用AdaBoost算法对于样本权重较敏感的特点,增强对小类样本的关注度。并且利用AUCarea作为评价标准,相对于其他评价标准,AUCarea具有可视化的优点且对较差AUC更加敏感。最后,与其他几种不均衡分类算法在不平衡数据集上进行对比,结果证明该算法可有效处理不均衡多分类问题。 相似文献
12.
胡小生 《佛山科学技术学院学报(自然科学版)》2013,(5):22-26
提出一种改进随机子空间与C4.5决策树算法相结合的分类算法.以C4.5算法构建决策树作为集成学习的基分类器,每次迭代初始,将SMOTE采样技术与随机子空间方法相结合,生成在特征空间和数据分布上差异明显的合成样例,为基分类器提供多样化的平衡训练数据集,采用绝大多数投票方法进行最终决策的融合输出.实验结果表明,该方法对少数类和多数类均具有较高的识别率. 相似文献
13.
半监督学习是一种利用有标记样本和无标记样本进行学习的新的机器学习方法。针对单分类中只有目标类标记样本和大量无标记样本的情况,提出了一种基于半监督学习的单类分类算法。利用已标识的有标记样本建立两个单类分类器,通过相互学习来挖掘未标记样本中的隐含信息,扩大有标记样本的数量。利用所有已标识样本,用不同的单分类方法建立多个单类分类器,通过集成学习的方法得到最终的分类器。在UCI数据集上进行了实验,表明提出的基于半监督学习的单类分类器的有效性。 相似文献
14.
针对现有的大部分细粒度图像分类算法都忽略了局部定位和局部特征学习是相互关联的问题,提出了一种基于集成迁移学习的细粒度图像分类算法。该算法的分类网络由区域检测分类和多尺度特征组合组成。区域检测分类网络通过类别激活映射(class activation mapping,CAM)方法获得局部区域,以相互强化学习的方式,从定位的局部区域中学习图像的细微特征,组合各局部区域特征作为最终的特征表示进行分类。该细粒度图像分类网络在训练过程中结合提出的集成迁移学习方法,基于迁移学习,通过随机加权平均方法集成局部训练模型,从而获得更好的最终分类模型。使用该算法在数据集CUB-200-2011和Stanford Cars上进行实验,结果表明,与原有大部分算法对比,该算法具有更优的细粒度分类结果。 相似文献
15.
针对基于数据块的集成算法,存在数据块大小影响分类效果,且不能及时应对完整式概念漂移的问题,提出了一种考虑数据流局部特征的和能应对多种类型概念漂移的集成分类算法.用滑动窗口作为概念漂移检测器,当检测到概念漂移时,则建立新的分类器并加入到集成分类器中.本文提出的算法在人工合成和真实数据集上与经典算法进行了广泛的对比实验.结果表明:提出的算法在分类准确率上具有明显优势,消耗更少的内存,更适合多种类型概念漂移的环境. 相似文献
16.
引入图的误分类代价矩阵,选取以最小误分类代价为目标的加权子图作为图样本的特征属性,建立起图的决策树桩分类器,进行集成学习,得到一个对新图进行分类的判别函数.在生成候选子图时,利用子图的超图增益值具有上界的性质来裁剪增益值比较小的候选子图,从而减少候选子图数量,提高算法效率.实验结果表明,所提算法比其他图分类算法的误分类代价更小. 相似文献
17.
当前动态数据流下的实时分类问题存在3个难点:针对海量数据的实时处理;概念漂移的跟踪和模型的更新;模型的稳定和鲁棒性.针对上述问题,将极端支持向量机(extreme support vector machine,ESVM)与MapReduce框架结合,提出了带遗忘因子的鲁棒ESVM算法.该方法通过构造残差权重矩阵,对残差进行修正,同时加入遗忘因子,提高新样本的作用,从而实现对海量数据处理问题的求解.实验结果显示,所提出方法能够快速有效地对动态数据流进行分类,且结果不易受到噪声干扰,稳定性强. 相似文献
18.
由于信息技术的飞速发展,在实际的数据处理过程中,单个分类器往往不能满足:(1)要求越来越高的数据分类精度和运行速度;(2)更强的泛化性能;(3)有效地适用于大样本数据分类。该文将旋转森林算法(Rotation-Forest, ROF)与极限学习机(Extreme Learning Machine, ELM)相结合,有效地解决了旋转森林算法中过拟合现象的发生,同时也提高了算法的分类性能。最后通过UCI数据集的实验验证表明,和传统的集成分类算法相比,该算法(R-ELM-C)与Bagging、Adaboosting、Rotboost、ROF、ELM等算法相比,具有更好地分类性能、稳定性与泛化性能,同时也适合于大样本数据分类。 相似文献
19.
针对kNN分类算法对不平衡数据进行分类可能偏向多数类的问题,提出了象限壳近邻分类算法。该算法仅选择测试样本象限方向上的最近邻的训练样本来判断其所属类别,从而有效地避免了kNN算法对选取k个最近邻训练样本时可能产生偏向多数类的问题。通过在UCI真实不平衡数据集上的实验,该文提出的分类算法在Recall、F-value和G-mean等评价标准明显优于传统的kNN分类算法。 相似文献
20.
为了保证运算时效的同时,提高复杂数据的分类精度,提出了基于多目标蜂群算法和极限学习机的数据分类算法。该方法以最小的特征个数和最高的分类精度为优化目标,利用改进的多目标蜂群算法对数据的特征个数和分类器参数进行寻优,针对多个有代表性的数据集进行仿真,结果表明所提出方法的有效性。 相似文献