首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
深度还原-弱磁选回收稀土尾矿中铁的试验研究   总被引:1,自引:0,他引:1  
对某全铁品位为1625%的稀土尾矿进行了深度还原-弱磁选回收铁试验研究,研究了还原剂种类及用量、焙烧温度及时间、磨矿细度及磁场强度对铁精矿品位和回收率的影响,并采用SEM,XRD等手段对稀土尾矿、焙烧产物、铁精矿进行了测试.结果表明,在烟煤质量分数30%,焙烧温度1300℃,焙烧时间60min,磨矿细度-0074mm占75%,磁场强度118kA/m的条件下,所得铁精矿TFe品位可达8076%,铁回收率可达9324%;稀土尾矿经深度还原后,其中的赤、褐铁矿、硅酸铁等含铁矿物转化为单质铁,铁精矿品位和回收率较常规选矿方法大幅度提高,同时脉石矿物组成简单,有利于萤石的富集回收.  相似文献   

2.
高铝硅氰化渣中铁回收工艺   总被引:1,自引:0,他引:1  
研究一种处理磁选前高铝硅氰化渣的新工艺。采用复合添加剂焙烧-水浸-磁选工艺对一种铁品位为27.69%(质量分数),SiO2含量为23.9%,Al2O3含量为6.35%的高铝硅氰化渣进行杂质与铁分离的研究。研究结果表明:在最佳焙烧条件下,当水浸温度为60℃,液固比为15:1,水浸时间为5 min,转速为20 r/min,在激磁电流为2 A时,可获得铁品位57.11%,铁的回收率为72.58%的铁精矿。铁的品位和回收率都比单纯的复合添加剂还原焙烧-磁选法所获得的铁精矿的指标高,铁的品位提高了10%左右,回收率提高了30%左右。X线荧光(XRF),X线衍射(XRD)及能谱(EDS)分析研究结果表明:经水浸后,复合添加剂焙烧过程中所产生的可溶性复杂杂质化合物被洗除,不溶性物质经磁选后随之进入非磁性物,实现铁与杂质矿物之间的有效分离。  相似文献   

3.
Lead, zinc, and iron were recovered from jarosite residues using direct reduction followed by magnetic separation. The influence of the coal dosage, reduction temperature, and reduction time on the volatilization rates of lead and zinc and the metallization rate of iron were investigated. The results show that the volatilization rates of lead and zinc were 96.97% and 99.89%, respectively, and the iron metallization rate was 91.97% under the optimal reduction roasting conditions of a coal dosage of 25.0wt% and reduction roasting at 1250℃ for 60 min. The magnetic concentrate with an iron content of 90.59wt% and an iron recovery rate of 50.87% was obtained under the optimum conditions in which 96.56% of the reduction product particles were smaller than 37 μm and the magnetic field strength was 24 kA/m. Therefore, the results of this study demonstrate that recovering valuable metals such as lead, zinc, and iron from jarosite residues is feasible using the developed approach.  相似文献   

4.
以某稀土综合尾矿经磨矿-磁选-浮选处理后的含铌铁尾矿为对象,采用深度还原焙烧的方法分离回收铌和铁,研究还原焙烧条件对铌、铁分离效果的影响。结果表明,还原剂种类对铁回收率的影响较为显著,对铌的分离回收影响相对较小,还原剂为褐煤时铁回收率最高;还原时间的延长、焙烧温度的升高以及助熔剂用量的增加均有利于铌、铁的分离回收;在还原剂褐煤用量为10%、助熔剂用量为15%、还原时间为60min、还原温度为1300℃的条件下可实现含铌铁尾矿中铌、铁的高效分离回收,得到w(TFe)为94.82%的铁精矿,铁回收率为99.53%,同时还得到w(Nb2O5)为0.3519%的铌粗精矿,铌回收率为99.62%。  相似文献   

5.
对高炉灰在直接还原焙烧-弱磁选工艺中用作印尼某海滨钛磁铁矿还原剂的可行性及其机理进行研究.结果表明,以萤石为添加剂的条件下,高炉灰可代替煤做还原剂,通过高炉灰与萤石的共同作用,可以在直接还原过程中提高还原铁粉中铁的回收率及品位并降低TiO2质量分数,同时回收高炉灰中铁.三种不同产地高炉灰还原效果的比较表明,高炉灰性质对还原效果有影响.在相同用量条件下,津鑫高炉灰( JX)还原效果最好;在JX高炉灰用量30%、萤石用量10%、焙烧温度1250益以及焙烧时间为60 min时,焙烧产物通过两段磨矿和两段磁选,最终得到最佳的还原铁粉中铁品位为91.28%,TiO2质量分数降至0.93%,包括海滨砂矿和高炉灰中铁的铁总回收率达到89.19%.  相似文献   

6.
采用强磁预选—磁化焙烧—磁选联合工艺对大西沟难选菱铁矿石进行试验研究.结果表明:在磨矿细度-74μm占55%、强磁粗选磁场强度318kA/m、强磁扫选磁场强度717kA/m的条件下,可得到TFe品位为28.47%、回收率为96.78%的强磁精矿;强磁精矿在中性气氛中于焙烧温度700℃、焙烧时间40min、磨矿细度-43μm占95%、弱磁选磁场强度104kA/m的综合条件下,获得TFe品位为59.29%、回收率87.50%的精矿产品.XRD、光学显微镜和VSM等分析结果表明:难选菱铁矿和褐铁矿经焙烧后转变为易选磁铁矿,新生成的磁铁矿表面疏松多孔,多呈胶状,与脉石矿物紧密共生,其磁化强度和比磁化系数均显著提高.  相似文献   

7.
高铁铝土矿直接还原—溶出工艺   总被引:3,自引:0,他引:3  
提出了一种以Na2CO3为添加剂、以煤为还原剂的还原分离方法,将原矿中铁的氧化物还原为铁单质粉末通过磁选分离回收,将水铝石矿物转化为铝酸钠溶出分离回收.通过单因素实验考察了还原温度、还原时间、Na2CO3用量和还原剂用量对粉末铁品位、铁回收率和氧化铝溶出率的影响,并用X射线衍射分析、扫描电镜观察和能谱分析等方法研究了反应的过程和机理.通过正交试验优化了实验参数,获得的最优条件为还原温度1150℃,还原时间45 min,Na2CO3用量40.47%,还原剂用量11.9%;在最优条件下,粉末铁品位为95.88%,铁回收率为89.92%,氧化铝溶出率为75.92%.  相似文献   

8.
红土镍矿深度还原-磁选富集镍铁实验研究   总被引:2,自引:0,他引:2  
采用深度还原-磁选工艺,以煤粉为还原剂,添加氧化钙作助溶剂,在微熔化,不完全造渣的条件下,将矿石中镍和铁的氧化物还原成金属镍铁,然后经磁选方法使金属镍铁在磁性产品中得到富集.结果表明,深度还原最佳工艺条件为:还原温度1 300℃,还原时间60 min,配煤过剩倍数2.在此工艺条件下得到镍、铁质量分数分别为5.01%,22.46%的镍铁产品,镍、铁回收率分别为96.05%,79.69%.对深度还原过程研究表明,还原物料中镍和铁以金属合金颗粒形式存在,高温有利于镍铁金属相凝聚,适当延长还原反应时间有利于镍铁颗粒的还原和聚集长大,进而有利于磁选富集.  相似文献   

9.
针对现有含硼铁精矿硼铁分离工艺所存在的弊端,提出了含硼铁精矿选择性还原-选分新工艺,并通过热力学分析和实验室研究进行了验证.研究表明:对于辽宁凤城Fe和B2O3质量分数分别为5605%和386%的含硼铁精矿,最佳的选择性还原-选分工艺参数如下:配碳比08~10,还原温度1275~1300℃,还原时间不小于20min,还原煤粒度为-0075mm,分选时的磁场强度为50mT.得到的选分产物为高金属化率的金属铁粉,可进一步处理用于钢铁生产;选分尾矿为高品位的含硼资源,可作为硼工业的优质原料.  相似文献   

10.
研究了还原剂云南煤和脱硫剂SH对硫酸渣在直接还原焙烧过程中提铁降硫效果的影响.采用X射线衍射与扫描电镜方法分析了云南煤与脱硫剂SH的作用机理.结果表明:在高温还原气氛下,硫酸渣中的黄铁矿生成具有挥发性的气态单质硫和气态羰基硫、金属铁和非磁性的陨硫铁;硫酸渣中的赤铁矿和磁铁矿则被还原为金属铁;云南煤对硫酸渣在焙烧过程中的脱硫效果比较明显,但无法达到要求的指标;添加脱硫剂SH可以进一步降低还原铁中的硫,其机理是脱硫剂与硫酸渣中的黄铁矿在直接还原焙烧过程中反应生成金属铁和没有磁性的硫化钙,通过磨矿--磁选的方法将硫化钙与金属铁分离,从而达到脱硫目标.  相似文献   

11.
应用化学分析、扫描电镜观察和X射线衍射分析方法研究海砂矿的基础物性. 采用煤基深度还原-磁选工艺,系统考察矿粉中Fe和Ti的还原分离行为,并明确还原温度、还原时间、碳氧比、磁感应强度和磨矿粒度对还原磁选效果的影响规律. 结果表明:海砂矿主要由钛磁铁矿和钛赤铁矿组成;较优的还原分离工艺参数为还原温度1300℃、还原时间30 min、碳氧摩尔比1. 1、磁感应强度50 mT和磨矿细度-0. 074 mm质量分数86. 34%. 在此工艺条件下,可以获得金属化率94. 23%的还原产物,磁选指标分别达到精矿铁品位97. 19%和尾矿钛品位57. 94%,对应的铁、钛回收率为90. 28%和87. 22%,有效地实现海砂矿中铁钛元素的分离富集.  相似文献   

12.
采用差热分析(TG-DTA)和X射线衍射(XRD)方法研究了C-Ca(OH)2-NaOH体系焙烧白云鄂博尾矿的过程,考察了焙烧温度、焙烧时间、煤用量、Ca(OH)2用量及NaOH用量对尾矿中稀土矿分解和赤铁矿还原的影响.结果表明:在焙烧温度为650℃,焙烧时间为60min,煤加入量为2%,Ca(OH)2加入量为4%,NaOH加入量为2%的条件下,赤铁矿可以有效地还原为磁铁矿,还原磁化率为2.37;同时,稀土矿有效地分解成稀土氧化物,稀土浸出率达98.39%.  相似文献   

13.
The present investigation examines the viability of dolochar, a sponge iron industry waste material, as a reductant in the reduction roasting of iron ore slimes, which are another waste generated by iron ore beneficiation plants. Under statistically determined optimum conditions, which include a temperature of 900℃, a reductant-to-feed mass ratio of 0.35, and a reduction time of 30-45 min, the roasted mass, after being subjected to low-intensity magnetic separation, yielded an iron ore concentrate of approximately 64wt% Fe at a mass recovery of approximately 71% from the feed iron ore slime assaying 56.2wt% Fe. X-ray diffraction analyses indicated that the magnetic products contain magnetite and hematite as the major phases, whereas the nonmagnetic fractions contain quartz and hematite.  相似文献   

14.
针对东鞍山贫铁矿石(Fe质量分数34.60%)中含有赤铁矿、磁铁矿和少量的菱铁矿,提出了一种弱磁粗选-高梯度扫选的预富集工艺,并借助XRD、铁的化学物相分析及扫描电镜(SEM)考察了磁场强度和原料磨矿细度对东鞍山铁矿石预富集行为的影响.结果表明,在磨矿细度-0.074mm占70%(质量分数)、弱磁粗选磁场强度120mT、高梯度扫选Ⅰ磁场强度300mT及高梯度扫选Ⅱ磁场强度800mT的条件下,可获得Fe质量分数42.67%、回收率95.45%的预富集精矿;磁铁矿富集于弱磁粗选作业中,赤铁矿和菱铁矿在高梯度扫选作业中得到有效富集,尾矿中丢失的铁矿物主要为微细粒赤铁矿(<10μm),由于受到的磁性捕获力弱而无法得到回收.  相似文献   

15.
This study used specularite, a high-gradient magnetic separation concentrate, as a raw material in reverse flotation. An iron concentrate with a grade of 65.1wt% and a recovery rate of 75.31% were obtained. A centrifugal concentrator served as the deep purification equipment for the preparation of iron oxide red pigments, and its optimal rotating drum speed, feed concentration, and other conditions were determined. Under optimal conditions, a high-purity iron oxide concentrate with a grade of 69.38wt% and a recovery rate of 80.89% were obtained and used as a raw material for preparing iron oxide red pigment. Calcining with sulfuric acid produced iron red pigments with different hues. Simultaneously, middlings with a grade of 60.20wt% and a recovery rate of 17.51% were obtained and could be used in blast furnace ironmaking. High-value utilization of specularite beneficiation products was thus achieved.  相似文献   

16.
Oolitic iron ore is one of the most important iron resources. This paper reports the recovery of iron from high phosphorus oolitic iron ore using coal-based reduction and magnetic separation. The influences of reduction temperature, reduction time, C/O mole ratio, and CaO content on the metallization degree and iron recovery were investigated in detail. Experimental results show that reduced products with the metallization degree of 95.82% could be produced under the optimal conditions (i.e., reduction temperature, 1250℃; reduction time, 50 min; C/O mole ratio, 2.0; and CaO content, 10wt%). The magnetic concentrate containing 89.63wt% Fe with the iron recovery of 96.21% was obtained. According to the mineralogical and morphologic analysis, the iron minerals had been reduced and iron was mainly enriched into the metallic iron phase embedded in the slag matrix in the form of spherical particles. Apatite was also reduced to phosphorus, which partially migrated into the metallic iron phase.  相似文献   

17.
转炉钢渣工艺矿物学及其综合利用技术   总被引:1,自引:0,他引:1  
对经缓冷处理后转炉钢渣的工艺矿物学特征及其综合利用技术进行研究.结果表明:转炉钢渣的主要物相组成为硅酸三钙、硅酸二钙、金属铁与氧化亚铁固溶体以及少量铁酸钙和磷灰石等;在磨矿粒度小于0.044 mm、磁场强度为0.08 T的分选条件下,可得铁品位为75.93%的磁性物,铁的磁选回收率为18.32%;非磁性物采用质量分数为3.5%硫酸溶液常温浸出120 min,可脱除90.28%的磷,非磁性物质中的磷含量由0.700%降至0.068%.  相似文献   

18.
以海南某石英脉型金矿石为原料,进行尼尔森重选-浮选试验研究.通过GRG试验得出金矿中重选可回收金质量分数为80.88%.通过条件试验确定了该矿石尼尔森重选-浮选的最佳条件为:磨矿细度-74μm占80%,相对离心力60g,反冲水压16kPa,矿浆质量分数40%,戊基黄药用量200g/t,浮选时间5 min.原矿石品位9.8g/t,利用尼尔森选矿机一次分选可得品位230g/t,金回收率80.30%的重选精矿.重选尾矿品位2.0g/t,经过一次粗选一次精选三次扫选处理,可得浮选精矿品位57.3g/t,浮选金作业回收率75.66%.经尼尔森重选-浮选流程处理后,尾矿金品位降至0.5g/t,全流程金总回收率95.21%.  相似文献   

19.
回收含铁硅酸盐矿物是实现鞍山式贫磁铁矿再选中矿综合利用的关键之一,但这一回收过程应有选择性:一段磁选尾渣TFe仅为3.92%,不予以回收;而二段尾渣TFe为34.51%,可将其返回直接还原配料,予以间接回收。还原温度1150℃、还原时间45 min、石灰石用量16%以及还原煤用量12%时,闭路实验获得的最优粉末铁TFe为92.69%,εFe为91.17%。含铁硅酸盐中铁元素被还原为单质铁,硅元素最终重构为硅灰石。  相似文献   

20.
To achieve high efficiency utilization of Panzhihua vanadium titano-magnetite, a new process of metalizing reduction and magnetic separation based on hot briquetting is proposed, and factors that affect the cold strength of the hot-briquetting products and the efficiency of reduction and magnetic separation are successively investigated through laboratory experiments. The relevant mechanisms are elucidated on the basis of microstructural observations. Experimental results show that the optimal process parameters for hot briquetting include a hot briquetting temperature of 475℃, a carbon ratio of 1.2, ore and coal particle sizes of less than 74 μm. Additionally, with respect to metalizing reduction and magnetic separation, the rational parameters include a magnetic field intensity of 50 mT, a reduction temperature of 1350℃, a reduction time of 60 min, and a carbon ratio of 1.2. Under these above conditions, the crushing strength of the hot-briquetting agglomerates is 1480 N, and the recovery ratios of iron, vanadium, and titanium are as high as 91.19%, 61.82%, and 85.31%, respectively. The new process of metalizing reduction and magnetic separation based on hot briquetting demonstrates the evident technological advantages of high efficiency separation of iron from other valuable elements in the vanadium titano-magnetite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号