首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
The effect of TiO_2,ZrO_2 and Na_3AlF_6 ultrafine powders on the fine structure and the phase composition of Fe–14Mn–1.2C steel was investigated.The introduction of the ultrafine powders into the melt influenced the grain size,the quantity,and the character of distribution of nonmetallic inclusions in the railroad frogs.The microstructure of castings was improved significantly because of the refinement of the grain structure and an increase of the grain-boundary area.After the modifying mixture was introduced into the melt,either the microtwins of one or two intersecting systems or the precipitations of ε-martensite of different types,or simultaneously the microtwins and wafers of ε-martensite,were present in each grain.  相似文献   

2.
In order to improve the strength and toughness of Q690E steel sheets, the effect of rare earth element Ce on the strength and toughness of Q690E steel was studied by means of transmission electron microscopy, scanning electron microscopy, and metallographic microscope. The results showed that the addition of Ce in steel limited the combination of S with Mn and Ca, transformed Al2O3 inclusion into spherical CeAlO3 inclusion, and modified the precipitate form of some composite inclusions of TiN and sulfide oxides into TiN precipitation alone. The inclusions were spheroidizing. The size of inclusions was decreased from 3-5 μm to 1-2 μm, and the distribution was dispersed. Ce played a role in purifying molten steel through desulphurization and deoxidization. Meanwhile, the addition of Ce in steel effectively increased the nucleation particles in the liquid phase, improved the nucleation rate, enlarged the equiaxed grain refinement area, and limited the development of columnar crystals. The average grain size of slab decreased from 45.76 to 35.25 μm, and the proportion of large grain size (> 50 μm) decreased from 40.41% to 23.74%. The macrostructural examination of slab was improved from B0.5 to C2.0, which realized the refinement of the solidified structure and reduced the banded structure of hot rolled plate. In addition, due to the inheritance of refined structure in the upstream, the recrystallization of deformed austenite and the growth of grain after recrystallization were restrained, and a refined tempered sorbite structure was obtained. When rare earth element Ce was added, the width of the martensite lath bundle was narrowed from about 500 nm to about 200 nm, which realized a remarkable grain refinement strengthening and toughening effect. Mechanical properties such as tensile, yield, and low-temperature impact toughness were significantly improved.  相似文献   

3.
Developments in the contents of different typical inclusions in 3104 alloy melt were described during heating and holding processing. The settling process of inclusion particles was investigated by measuring the contents of inclusions in the surface, center, and bottom layers of the molten metal. In the results, main inclusions observed and determined by Prefil and PoDFA methods are MgO, Al2O3, spinel (MgAl2O4), and TiB2 particles or thin films. It is found that some small particles of Al2O3 and MgO are transformed into spinel particles, and the formation rate increases as the temperature and the holding period of melt increase. The content of inclusions increases from 3.37 mm2·kg-1 to 7.54 mm2·kg-1 and then decreases to 3.08 mm2·kg-1 after holding for 90 min. This is attributed to a settling phenomenon and a significant increase in settling velocity after holding for 60 min. The content of inclusion particles decreases by means of settlement and flotation in liquid aluminum with an increase in holding time. The theoretical analysis and experiment results are in essential agreement with those from industrial production.  相似文献   

4.
Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in different superheated melts. The results indicate that the grain refining effect of a given pulse electric field holds an optimal temperature range, moreover, a lower or higher superheated temperature will both disadvantage the improvements of casting structure. It essentially lies in the cooperative action between the distorted absorption of clusters and the activated capability of atoms in the aluminum melt.  相似文献   

5.
The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the slag was enriched into the perovskite phase, which served as the Ti-rich phase during the crystallization process. The phase transformation, occurrence state, and the interface of the Ti component were observed to be affected by the addition of different types of agents. During the oxidation process, titanaugite and Ti-rich diopside phases gradually transformed into non-Ti phases (anorthite: CaMgSi2O6 and CaAl2Si2O8) in the form of dendrites or columns, which were observed to be distributed at the surface of the perovskite phase. Several more cracks appeared along the grain boundaries of the perovskite phase after the addition of P2O5, facilitating the liberation of the perovskite phase. Composite additives combining both an acid and a base, such as CaO + CaF2 or P2O5 + CaF2, were used. We observed that the disadvantages of using single additives were successfully overcome.  相似文献   

6.
The viscosity of CaF2-CaO-Al2O3-MgO-(TiO2) slag was measured using a rotating crucible viscometer. Raman spectroscopy analysis was performed to correlate the viscosity to slag structure. The viscosity of the slag was found to decrease with increasing TiO2 content in the slag from 0 to 9.73wt%. The activation energy decreased from 95.16 kJ/mol to 79.40 kJ/mol with increasing TiO2 content in the slag. The introduction of TiO2 into the slag played a destructive role in Al-O-Al structural units and Q4 units by forming simpler structural units of Q2 and Ti2O64- chain. The amount of Al-O-Al significantly decreased with increasing TiO2 content. The relative fraction of Q4 units in the[AlO4]5--tetrahedral units shows a decreasing trend, whereas the relative fraction of Q2 units and Ti2O64- chain increases with increasing TiO2 content accordingly. Consequently, the polymerization degree of the slag decreases with increasing TiO2 content. The variation in slag structure is consistent with the change in measured viscosity.  相似文献   

7.
Ultrafine barium hexaferrite (BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe (~99.7%) under the optimum conditions. The hexaferrite precursors were obtained by the co-precipitation of BaS produced by the reduction of barite ore with carbon at 1273 K and then dissolved in diluted HCl and FeCl3 solution at pH 10 using NaOH as a base; the product was then annealed at 1273 K in an open atmosphere. The effect of Fe3+/Ba2+ molar ratio and the addition of hydrogen peroxide (H2O2) on the phase structure, crystallite size, morphology, and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. Single-phase BaFe12O19 powder was obtained at an Fe3+/Ba2+ molar ratio of 8.00. The formed powders exhibited a hexagonal platelet-like structure. Good maximum magnetization (48.3 A·m2·kg–1) was achieved in the material prepared at an Fe3+/Ba2+ molar ratio of 8.0 in the presence of 5% H2O2 as an oxidizer and at 1273 K because of the formation of a uniform, hexagonal-shaped structure.  相似文献   

8.
To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.  相似文献   

9.
A novel process was developed for the preparation of ultrafine silica from potash feldspar. In the first step, potash feldspar was roasted with Na2CO3 and was followed by leaching using NaOH solution to increase the levels of potassium, sodium, and aluminum in the solid residue. The leaching solution was then carbonated to yield ultrafine silica. The optimized reaction conditions in the roasting process were as follows: an Na2CO3-to-potash feldspar molar ratio of 1.1, a reaction temperature of 875°C, and a reaction time of 1.5 h. Under these conditions, the extraction rate of SiO2 was 98.13%. The optimized carbonation conditions included a final solution pH value of 9.0, a temperature of 40°C, a CO2 flow rate of 6 mL/min, a stirring intensity of 600 r/min, and an ethanol-to-water volume ratio of 1:9. The precipitation rate and granularity of the SiO2 particles were 99.63% and 200 nm, respectively. We confirmed the quality of the obtained ultrafine silica by comparing the recorded indexes with those specified in Chinese National Standard GB 25576―2010.  相似文献   

10.
Self-propagating high-temperature synthesis (SHS) was used to fabricate a Fe(Cr)-Al2O3 nanocomposite. The composite was fabricated by the reactions between the powders of Fe, Fe2O3, Cr2O3, and Al. The effect of blending ratio and mechanical activation of the initial powders and the precursor compressing pressure on the microstructure of the final product was studied by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The significance of the effect of each of the aforementioned parameters on the quality of the composite (assessed by measuring the compressive strength and wear resistance) was determined using a full-factorial design of experiments method. The results showed that the best molar powder ratio that produced the most homogeneous product through a sustainable SHS reaction was Fe:Fe2O3:Cr2O3:Al=10:1:1:4. A lower Fe content caused the Fe(Cr) phase to melt and separate from the rest of the materials.  相似文献   

11.
对一种热轧态高锰减振结构钢进行不同温度的热处理,研究了奥氏体化温度对其组织和拉伸性能的影响.结果表明:在600℃条件下,逆转变得到的全奥氏体组织只发生回复过程,冷却时ε马氏体含量比热轧态高,此时的拉伸强度和加工硬化率也较大.当奥氏体化温度为800℃或更高时,奥氏体发生完全静态再结晶.原始奥氏体晶粒尺寸和ε马氏体含量随着温度的升高而增加,但钢的力学性能随之变差.在1 200℃下奥氏体化处理后,组织中ε马氏体板条十分细碎;在拉伸时由于奥氏体晶粒尺寸太大,实验钢发生了沿晶断裂.  相似文献   

12.
纳米晶TiO2超细粉的研制   总被引:2,自引:0,他引:2  
纳米晶TiO2超细粉的研制尹荔松周歧发唐新桂林光明张进修(中山大学超细材料研究中心,广州510275)关键词纳米晶,溶胶-凝胶法,超细粉分类号TQ174.758二氧化钛(TiO2)是一种重要的无机功能材料,具有湿敏、气敏及光催化等功能,也是制备铁电...  相似文献   

13.
激光气相法制备TiO2超精细粉末   总被引:1,自引:0,他引:1  
利用脉冲红外激光产生的等离子体,诱导反应体系TiCl4/O2合成了TiO2超精细粉末,采用IR、XRD、XPS、TEM等技术对粉体进行了分析表征,结果表明,TiO2超精细粉末粒径在140A左右,具有大小均匀,不团聚,粒径尺寸分布窄等优点,由该粉体催化CO氧化结果表明,对CO氧化反应具有较高催化活性。  相似文献   

14.
溶胶-凝胶法制备超细Y_2O_3: Eu~(3+)   总被引:4,自引:0,他引:4  
以金属醇盐为原料,采用溶胶-凝胶法制备出均匀的、体心立方结构的Y2O3Eu3+超细粉末.借助TG-DTA、IR、XRD和SEM等分析手段,研究了凝胶的转变过程和粉末的结构,观察了粉末的形貌和粒径.结果表明:在423℃煅烧已有Y2O3Eu3+相生成,经850℃煅烧即得单-Y2O3Eu3+相超微粉,平均晶粒尺寸为53nm;煅烧温度进一步升高,Y2O3Eu3+晶粒长大  相似文献   

15.
要硬脂酸凝胶法制备了BaTiO3微粉和陶瓷.XRD、介电、压电和热释电性的研究结果表明,所有样品在室温下都呈立方钙钛矿结构,没有铁电性,但陶瓷有低温铁电性.XRD对这些样品所测的晶粒尺寸都有常规BaTiO3的铁电临界尺寸以下.基于表面层的成份偏析,我们对其晶粒生长困难给出了初步解释.  相似文献   

16.
研究了WO3粉和W粉的剪切破碎时间对WO3粉和W粉的沉降曲线、平均粒度、BET比表面及松装密度的影响.用TEM和SEM对剪切破碎前后的粉末进行了直接观察.结果表明:新型剪切破碎机能有效地粉碎微米级WO3等脆性粉末,同时可以破坏超细W粉中的桥接团粒,使W粉和WO3粉的松装密度增加1倍以上,但对比表面积影响不大.  相似文献   

17.
SiC微粉在水介质中的分散研究   总被引:1,自引:0,他引:1  
研究了多热源炉和无限微热源炉合成的SiC微粉和晶须在水介质中的自然分散行为和不同分散方法以及不同分散剂在不同条件下对其分散作用的影响。结果表明,超声波对SiC微粉的分散效果较明显;不同的分散剂对SiC微粉均有不同程度的分散作用;分散剂四甲基氢氧化铵对SiC微粉的分散效果最好。  相似文献   

18.
化学沉淀法制备多孔纳米SiO_2粉末   总被引:7,自引:0,他引:7  
化学沉淀法制备多孔状纳米 SiO2微粉是以水玻璃和盐酸为原料,添加适宜的稳定剂(非离子表面活剂)在适宜的 pH值和温度下沉淀合成 .采用微波干燥后,在适宜的温度下煅烧所得到产品粉末,采用 BDL- B型电位仪、 BET、 EPMA-电子探针及 DTA- TGA等手段对其性能进行了表征,结果表明,制得的 SiO2超细微粉,颗粒呈多孔状,具有巨大的比表面积,高达 1000m2/g以上,孔径为 25左右 .粒度分布均匀,粒度可达纳米级,这种粉末具有特殊的性能 .  相似文献   

19.
采用5种不同TaC含量的超细WC-Co类稀土硬质合金粉体,经过高能球磨72 h,冷压成型后在1 380℃下真空烧结制备成硬质合金试样.重点讨论TaC含量对合金性能和微观结构的影响.结果表明,TaC的加入有利于提高合金的物理性能,并且有晶粒长大抑制作用.  相似文献   

20.
硬脂酸凝胶法制备TiO_2纳米粉末及其表征   总被引:1,自引:0,他引:1  
以硬脂酸、钛酸四丁酯为原料 ,用硬脂酸凝胶法制备了TiO2 超细粉末 .运用差热 热重 (DTA TG)、傅里叶红外光谱对制备过程进行了表征 ;用X射线粉末衍射 (XRD)、透射电镜 (TEM)对纳米晶的粒径和形貌进行了表征 .不同温度处理可得到不同晶型和形貌的纳米二氧化钛  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号