首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
不同类型光生物反应器的螺旋藻培养特性研究   总被引:5,自引:0,他引:5  
采用了5种不同类型光生物反应器进行螺旋藻分批培养,发现在相同条件下:光强10000lx,温度25℃,以气升式外循环光生物反应器与鼓泡柱式光生物反应器效果较好,细胞干重分别为2.43g/L和2.15g/L;当光强为15000lx时,干重可达5.07g/L和2.73g/L。  相似文献   

2.
钝顶螺旋藻的培养及其生物学特性的研究   总被引:8,自引:2,他引:6  
通过对钝顶螺旋藻(Spirulinaplatensis)的室内培养,选择了其最佳的培养条件,对藻体中的碳水化合物、粗蛋白、灰分进行分析,并且研究了钝顶螺旋藻对铁、锌、钙、碘等生命必须元素的吸收情况。结果表明,钝顶螺旋藻在2500lux,34+1℃,光暗比为12:12,NaHCO3浓度为13.0g/L的培养液中生物量最高可达2.66mg干重/ml。藻体中的碳水化合物占干重的16.0%,粗蛋白占干重/  相似文献   

3.
钝顶螺旋藻对硒的富集和有机化作用   总被引:4,自引:1,他引:4  
目的:研究钝顶螺旋藻(Spirulina platensis,S.P)对硒的富集和有机化作用,方法:培养其中添加无机硒亚硒酸钠培养S.P,2,3-二氨基萘(DAN)荧光分光光度法测定不同增殖期藻体含硒量。结果:①S.P生长的迟缓期富集硒较快,而在快速期则有机硒增量较明显;②在高浓度无机硒条件下培养,藻体的总硒、有机硒、有机化率均呈现下降趋势;③S.P对硒的生物有机化率在培养第3d时较低,第6d时较高;添加150mg.L^-1硒培养的富硒螺旋藻,第6d时硒主要与水溶性蛋白质结合,占65.5%。结论:S.P中总硒含量、有机硒含量、硒的有机化率及硒在藻体中的分布均呈现动态变化。  相似文献   

4.
Te(IV)对钝顶螺旋藻和极大螺旋藻的生物效应   总被引:8,自引:1,他引:8  
研究了Te(Ⅳ)对西Spirulina platensis和Spirulina maxima两种螺旋藻的生物效应,结果表明,Te(Ⅳ)质量浓度在0.01~2mg/mL范围内对钝顶螺旋藻的生长有促进作用,且1mg/mL的Te(Ⅳ)促进作用最大,在此浓度范围内Te(Ⅳ)对极大螺旋藻生长影响则不明显;Te(Ⅳ)质量浓度大于32mg/mL时对两种螺旋藻均有抑制作用,其对钝顶和极大螺旋藻的半数有效质量浓度(96hEC50)分别为36.1mg/L和87.9mg/L,显微观察结果表明,当ρ[Te(Ⅳ)]≥100mg/L时,两种螺旋藻均出现严重的断裂和变形。  相似文献   

5.
钝顶螺旋藻去废水中氨氮使用液培养条件研究   总被引:1,自引:0,他引:1  
研究了钝顶螺旋藻母液与培养液温间差对钝顶螺旋藻使用液培养的影响、钝顶螺旋藻母液取量与培养时间的关系、水质对使用液培养的影响。实验结果表明:温间差以控制在5—6℃为宜,母液与培养液比以1/10为最佳,用蒸馏水或膜处理过的池塘水来培养钝项螺旋藻使用液较为理想.不宜采用含次氯酸的自来水进行培养。  相似文献   

6.
在60l扁平箱式光生物反应器中,采用Zarouk合成培养基、日光灯30klx连续照射及不同的混合系统,对钝顶螺旋藻进行了分批培养。当采用气-水循环系统(WRAS)和气升搅拌系统(AS)时,培养过程中的溶解氧都有所降低,分别从6.7mg/l降低到5.4mg/l和从8.6mg/l降低到2.0mg/l。采用AS在第7d时获得了钝顶螺旋藻生物量的最大浓度为1.85g/l。仅在采用AS的培养过程中未发现有明显的有如断裂和下沉的菌丝形态学变化。结果表明,与水循环系统(WRS)和WRAS相比,AS应用于扁平箱式光生物反应器中钝顶螺旋藻的培养更有效、更成功。  相似文献   

7.
培养方法对钝顶螺旋藻生长的影响   总被引:3,自引:0,他引:3  
比较两种培养方法:静置培养(每天定时摇动4次)和摇瓶培养(往复式摇床)对钝顶螺旋藻生长的影响。实验结果表明:遥瓶培养能加速藻的生长,生长周期缩短,生长速度、生物量、叶绿素a含量均高于静置培养,摇瓶培养能维持合适的溶解氧。摇瓶培养装置易于构建,混合效果良好,不易使螺旋藻丝断裂,还可使生物量提高约22.0%。  相似文献   

8.
螺旋藻是重要的单胞蛋白质来源。从本次螺旋藻实验可以证明,给予足够的光照、CO_2、搅拌,适合的营养介质,高碱性(PH8.6-9.5),以及最佳的温度,螺旋藻的生长率可在几小时内成倍增长。  相似文献   

9.
钝顶螺旋藻的混合营养分批和流加培养   总被引:1,自引:0,他引:1  
在4L小型发酵罐对钝顶螺旋藻混合舂批和流加培养进行研究,在混合营养流加2中获得10.2g/L的最大细胞浓度,在这个浓度分别是混合营养分批的营养的3.8 ,光合自养分批培养的7.2倍,而细胞们率则分别为混合营养分批2的2.8倍,光合自养分批2的4.9倍。  相似文献   

10.
Se(Ⅳ)对钝顶和极大螺旋藻生长的影响   总被引:1,自引:0,他引:1  
采用藻类生长动力学函数和藻类测试化学品毒性的标准方法,分别研究了高、低质量浓度Se(Ⅳ)对钝顶(S.platensis)和极大(S.maxima)螺旋藻生长的影响,结果表明:低质量浓度组中,Se(Ⅳ)的质量浓度低于16mg/L时对钝顶螺旋藻前4d的生长影响差异无显著性意义,但当质量浓度为32mg/L时出现明显的抑制作用;而低质量浓度范围内,即质量浓度低于32mg/L的Se(Ⅳ)在前4d对极大螺旋藻的生长的影响不明显.高质量浓度组中,当质量浓度高于560mg/L时,钝顶螺旋藻的生长被完全抑制;硒对极大螺旋藻的最低完全抑制质量浓度为600mg/L.  相似文献   

11.
就磁场处理技术对螺旋藻培养过程的强化进行了研究,发现螺旋藻的培养能明显地被适当的磁场处理所刺激,在强度为200-320kA/m的外加磁场作用下培养至第6天,螺旋藻最大细胞干重达2.76g/L,比同等条件下的空白对照试样多46.8%,其比生长率由0.4d^-1增至0.6d^-1,培养周期可缩短2-3d,同时,螺旋藻中蛋白质的含量增加了5.2mg/g,氨基酸总含量(除色氨酸外)增加了0.71mg/g,其中必需氨基酸增加了3.15mg/g,此外,微量元素Sr,Ni,Cu,Mn和Zn等均有显著增加,其中Sr和Ni分别增加了22.3和5.1倍,文中最后讨论了磁场处理对螺旋藻培养的强化机制,指出这种刺激作用与磁场处理加速了螺旋藻的光合作用和强化了其营养吸收有关。  相似文献   

12.
设计了用于螺旋藻培养的新型气升式光生物反应器,并用响应曲面法对其培养条件进行优化。实验选取影响螺旋藻生长的4个关键因子即光照强度、通气量、培养时间和接种量,并对其最佳水平范围进行研究,建立了以藻体干重为响应值的二次多项式方程。实验结果表明,4个因子对藻体生长的影响大小依次为光照强度、培养时间、装液量、通气量;对方程解逆矩阵可知,当光照强度、通气量、培养时闻和接种量分别达最佳水平44001x、212.2L/h、8.8d和7.2L时,DW最大值为1.277g/L。  相似文献   

13.
螺旋藻蛋白质提取工艺研究   总被引:4,自引:0,他引:4       下载免费PDF全文
以钝顶螺旋藻粉为原料, 经复水、胶磨、均质、浸提, 及等电点法, 提取其中的蛋白质,同时研制出钝顶螺旋藻蛋白质提取工艺条件, 使产品的蛋白质含量达89-8 % . 蛋白质的提取率达98 % .  相似文献   

14.
螺旋藻放氢与能量供应关系的初步研究   总被引:1,自引:0,他引:1  
通过暗处理消耗螺旋藻细胞内积存的可供放氢的能源,然后外加不同的呼吸基质。了解到处于暗饥饿状态的螺旋藻可以利用不同基质维持放氢。蔗糖等基质可使放氢活性恢复到暗饥饿前充足照光时的水平,乙酰基和酮戊二酸的恢复效果较差。藻细胞利用不同基质支持的放氢活性还受反应系统中氧浓度的影响,当氧浓度超过10%时,放氢活性差不多被完全抑制。在不同的基质存在和光照条件下,由藻细胞提取得的ATP 浓度有一定差异,这种差异与放氢活性似乎有一定的对应关系,表明蓝藻的放氢活性在适宜放氢的条件下,可能还受藻细胞内ATP 水平的影响。  相似文献   

15.
用Zarrouk培养基培养钝顶螺旋藻NS-90020,从中提取DNA,然后在加热条件下,使其DNA变性,跟踪DNA的变性过程中的增色效应,得到螺旋的熔解温度(Tm),根据经验公式(C+C)%=2.44*(Tm-69.3)可以算出螺旋藻体内G,C百分质量分数,作为进一步研究螺旋藻的遗传特性及育种的基础。  相似文献   

16.
螺旋藻(Spirulina platensis)放氢的研究   总被引:5,自引:1,他引:5  
螺旋藻含有可逆性氢酶,在合适的条件下能催化放氢.研究表明:当培养基的pH值为8.5~9.5,气相氧浓度为1%的条件时,能使螺旋藻放氢达到最大效率.外加葡萄糖、蔗糖有利于放氢,葡萄糖、蔗糖的最适浓度为0.1mol/L,而a-酮戊二酸、柠檬酸等对螺旋藻的放氢没有促进作用.  相似文献   

17.
研究了不同浓度抗氧化剂Na2S2O3、Vc、Cys对钝顶螺旋藻混合营养培养的影响.以干质量作为生长指标,培养9 d后,测定细胞干质量,发现随着抗氧化剂浓度的增加,细胞干质量逐渐增加,但到一定浓度后,细胞干质量开始下降.最大细胞干质量分别是:2.42、1.81、1.71 g/L,抗氧化效果以Na2S2O3最好.  相似文献   

18.
螺旋藻多糖及其硫酸酯清除羟自由基的活性   总被引:12,自引:0,他引:12  
螺旋藻粗多糖经阳离子表面活性剂十六烷基三甲基溴化铵和乙醇分级,获得多糖级分Sl,S2,S3。通过硫酸化修饰,合成相应的硫酸酯化多糖SL1,SL2,SL3.并用BaCl2—明胶比浊法确定硫酸基的含量,红外光谱法确定硫酸酯健在1240,810和620cm^-1处存在强的特征吸收峰.通过Fenton反应产生羟自由基模型,对比研究不同级分螺旋藻多糖化学修饰前后体外清除羟自由基(OH)的能力.实验表明,由于多糖级分不同,组成、极性和酸碱性的差异,其清除羟自由基能力强弱的顺序为:Sl>S3>S2;螺旋藻多糖经硫酸酯化后,SL2,SL3清除羟自由基能力比酯化前多糖S2,S2的能力显著增强.  相似文献   

19.
铋膜电极微分电位溶出法测定螺旋藻中铅的研究   总被引:1,自引:0,他引:1  
建立了镀铋膜电极替代镀汞膜电极微分电位溶出分析(DPSA)测定铅的方法,考查了同位镀铋膜测定铅的条件.结果表明,铅可在镀铋膜电极上产生灵敏的微分电位溶出峰,并据此建立了螺旋藻中铅的同位镀铋微分电位溶出法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号