共查询到20条相似文献,搜索用时 15 毫秒
1.
针对自然图像信号的非平稳特性和不同图像块的变换域系数的分布差异较大, 基于分块图像子带自适应
稀疏表示规则化,提出了一种新的压缩感知图像重构方法.先利用非局部相似块组估计每个分块图像变换域各子
带系数的均值和标准差,再将图像块各子带系数进行去均值并关于标准差归一化, 最后将去均值归一化处理的子
带系数的l1范数表示用于规则化压缩感知重构.由于块子带自适应稀疏表示更加合理地表达了稀疏系数的重要
性,使得重构图像能够更好地保留纹理、边缘等细节信息.大量的实验结果表明: 相比组稀疏表示的压缩感知重构
算法,该方法重构图像的峰值信噪比平均提高了0.69 dB. 相似文献
2.
杨秀杰 《西南师范大学学报(自然科学版)》2020,45(1):42-47
针对压缩感知理论中测量矩阵硬件实现与重构性能问题,提出一种深度学习方法来获得稀疏的三元测量压缩感知.该方法构建了非常稀疏的三元{0, 1,-1}观测矩阵,在所提出的网络架构上施加稀疏性和二元约束,用更少的观测值满足高概率的图像重构保证,解决了硬件限制和重构性能要求.该文深度学习架构以端到端的方式,提出的网络架构在训练阶段共同学习一对测量矩阵和重建算子,优化线性传感过程和非线性重构过程.实验表明:该文方法在5%非零元素测量矩阵条件下,图像重建质量优于现有方法,说明该文方法具有可行性与有效性. 相似文献
3.
《内蒙古师范大学学报(自然科学版)》2017,(1)
提出一种利用组稀疏表示进行CSMRI的方法.在字典学习过程中,对图像块按照相似性准则进行分组,并利用这些组进行字典训练.将组字典学习的代价函数引入到压缩感知核磁共振成像的模型中,并利用交替优化方法求解该模型.提出的算法不仅利用了图像的局部稀疏性,还利用了图像块之间的相似性(非局部相似性).实验结果证明,该算法能够重构出高质量图像. 相似文献
4.
通过探索无线传感器网络节点感知数据的时空相关性,可以构建适用于不同应用情形的联合稀疏模型。利用联合稀疏模型,提出了一种适用于无线传感器网络的分布式压缩感知算法。该算法采用联合编码联合解码的方式,充分利用了信号内部和信号之间的相关性,从而可以用更少的观测值实现信号群的精确重构。与单独编码单独解码相比,采用联合编码联合解码的方法,在保证信息可靠传输的前提下,减少了整个网络的数据流量,节约了宝贵的能量资源,以能量有效的方式满足了传感器网络的应用。 相似文献
5.
《石河子大学学报(自然科学版)》2017,(5)
图像在信息领域应用的重要性使人们对快速成像技术提出了更高需求,压缩感知理论为图像处理提供了一种新途径。本文研究了压缩感知理论应用于图像重构的关键技术,重点分析对比了各种因素对重构图像质量的影响。实验结果表明:通过小波变换基对信号稀疏,以哈达玛矩阵作为测量矩阵,使用正交匹配追踪算法时仅需50%的采样率即可获得较高质量的图像,有效减少了传统方法中冗余数据过多问题,在重构图像视觉效果和PSNR值上均有所提高,同时提高了恢复效率。本研究为应用压缩感知寻求最优化图像恢复方法在理论和技术上提供了有力依据和支撑。 相似文献
6.
《杭州师范大学学报(自然科学版)》2015,(5)
本文利用MATLAB平台设计了基于压缩感知的图像重构GUI系统,针对不同的变换基、测量矩阵、重构算法对图像的压缩采样及重构进行了比较和讨论,其中变换基包括小波变换基和离散余弦变换基;测量矩阵包括随机矩阵如高斯矩阵和贝努利矩阵,以及确定矩阵如哈达玛矩阵和托普利兹矩阵;重构算法包括正交匹配追踪算法和压缩采样匹配追踪算法.并通过峰值信噪比PSNR衡量了图像重构的性能.该GUI系统能够为基于压缩感知的图像重构提供直观的实现平台. 相似文献
7.
8.
图像的稀疏度对实现图像压缩感知重建具有十分重要的影响,波原子变换能够有效地对图像进行稀疏表示并且具有可逆性。本文提出一种基于波原子优化稀疏变换与组稀疏表示的图像压缩感知重构算法,根据图像波原子变换系数逐渐降低的特点,构建一种约束矩阵对图像的波原子变换系数进行抑制从而增强图像稀疏度,通过组稀疏表示图像重建算法进行图像的压缩感知重构,最后对重构图像进行波原子逆抑制变换恢复原图像。仿真实验结果表明,本文算法相较于原有算法能够更好重构图像纹理细节,重构图像质量有明显提高,能够实现更低的采样率的图像压缩感知重建。 相似文献
9.
用现有的人脸识别方法处理人脸姿态和光照的变化仍有一定的难度,本文提出一种基于图像重构和l_0范数稀疏表示的人脸识别算法:首先,采用深度学习网络提取人脸特征;然后,根据提取的特征重构人脸图像;最后,用l_0范数快速稀疏分类的识别算法在重构图像上进行识别.基于FERET人脸数据库的实验结果表明,本算法可在姿态变化比较大的情况下保持较高的人脸识别率以及较快的识别速度. 相似文献
10.
讨论了贝叶斯框架下压缩感知稀疏信号重构的方法,描述了基于非参数方法构建压缩感知字典的过程.实验结果表明:基于贝叶斯方法的压缩感知算法能够对单元脉冲信号进行较好重构,且与其他算法相比具有更小的重构误差.最后对贝叶斯压缩感知的发展进行展望. 相似文献
11.
运用压缩感知理论对大尺寸图像进行重构耗时较长,观测矩阵要求的存储空间较大,且重构后的图像存在明显的块状效应.根据图像小波变换系数的特点,将图像分块思想与DWT变换相结合,提出了一种改进的基于DWT的图像分块压缩感知算法.将图像子块经DWT变换后,保留图像低频系数,只对高频系数进行观测.重构时采用正交匹配追踪算法(OMP)对高频系数进行恢复.Matlab仿真结果表明,新算法跟基于DCT分块压缩感知算法相比,重构图像的PSNR值提高了2~4 dB,重构时间明显减少,与基于二维离散余弦变换(DCT)的分块压缩感知算法相比,块效应有明显的改善,重构图像质量明显提高. 相似文献
12.
《云南大学学报(自然科学版)》2017,(2)
针对正交匹配追踪(OMP)算法在压缩感知理论下的重构效果和所需时间相互矛盾的问题,基于子空间追踪(SP)算法的回溯思想,使用共轭梯度下降算法代替最小二乘法对正交匹配追踪(OMP)算法进行改进.并且对所改进算法的重构精度、重构稳定性进行了仿真实验,结果表明所提算法能保证重构质量良好并且有更好的重构速度和稳定性. 相似文献
13.
14.
实时心电监测的数据量过大,给系统的传输和存储带来很大压力.为降低采集端的功耗,达到既减轻采样复杂度又降低传输数据量的目的,使用压缩感知技术对心电信号进行压缩采样及重构.以信号重构时间和重构误差为关键指标,研究不同重构算法和小波基的性能表现.结果表明,当压缩率在30%以内时,基追踪作为信号重构算法的百分比均方根差小于4%,同时其重构耗时最短;当压缩率在70%以内时,子空间追踪的误差小于10%,且始终保持较低的重构耗时.最优小波基往往和具体压缩率有关. 相似文献
15.
《南阳理工学院学报》2017,(4):32-36
传统的数据重建算法受奈奎斯特采样定理限制,采样率要求较高不能灵活等适应实际环境。本文基于压缩感知和稀疏表示理论,提出一种采样点少且流形结构简单的图像重建算法,以少量的采样数据实现从低分辨率观测中恢复高分辨率图像。算法首先通过原始数据特征设计出稀疏表示矩阵;其次,根据表示数据和观测数据的不相关性找出与稀疏表示矩阵对应的最优感知矩阵;最后,通过稀疏求解实现数据的重建与去噪。实验表明,该算法在同等条件下能够避免大量冗余数据的计算,提高数据重建的稳定性和有效性。 相似文献
16.
《大庆师范学院学报》2015,(6):25-30
针对遥感图像融合提出了一种基于小波稀疏基的压缩感知算法,该算法利用IHS变换法得到的高空间分辨率融合图像有尖锐边缘及小波变换能较好的保持光谱信息的优势,将多光谱图像的I分量和全色图像进行小波变换;根据其高低频分量的特点,对其低频分量采用小波稀疏基的系数加权融合法,高频分量采用边缘提取法分别进行融合,最后进行小波逆变换和IHS逆变换得到最终融合结果。实验结果表明,不同的小波稀疏基系数对融合结果有较大的影响,且所选算法的融合效果优于系数最大值法及传统融合方法。 相似文献
17.
基于超完备字典稀疏表示的图像复原利用字典的冗余性能够有效地恢复出图像的结构特征,但由于使用字典稀疏表示时需要对整幅图像进行分块处理,导致复原后的图像块之间重构图像常出现"伪像"效应。针对这一问题,本文将图像梯度稀疏统计特性作为先验知识加入稀疏表示图像盲去模糊模型中,提出了一种基于字典稀疏表示和梯度稀疏的图像盲去模糊算法,同时分析了算法的整体优化求解方法。实验分析和结果表明,本文算法能在一定程度上去除图像块之间的"伪像"效应,保持图像的结构特征和整体平滑。本文算法的去模糊图像在峰值信噪比和视觉效果两方面均有显著提高。 相似文献
18.
在正交频分复用(OFDM)系统中,通常使用等间距的导频估计信道,比如多径瑞丽信道.但是,众多其他类型信道的冲击响应系数只有少数非零值.对于这些稀疏信道,基于压缩感知的稀疏信道估计可以有效地降低导频数目,从而提高频谱利用率.现有应用里面采用最小l1范数法.首先提出了OFDM系统中应用压缩感知理论估计信道的模型,接着使用改... 相似文献
19.
基于压缩感知的稀疏事件检测 总被引:1,自引:0,他引:1
为了提高无线传感器网络中稀疏事件的检测概率,利用压缩感知技术,提出了一种改进的下降迭代检测算法.该算法通过动态调节参数,改变迭代权值,加快了算法收敛速度.实验结果表明:在相同条件下,改进算法的成功检测概率比贝叶斯算法平均提高了13%. 相似文献
20.
针对目前合成孔径雷达(SAR)图像压缩感知重构算法没有充分利用小波系数相关性的缺点,提出了一种综合利用尺度间衰减性和尺度内方向能量聚集性的SAR图像贝叶斯压缩感知重构算法(DLWT-TDC)。首先采用方向提升小波变换(DLWT)对SAR图像进行稀疏表示,然后在3个高频子带中分别使用3×5、5×3、5×5邻域设计了具有方向和空间局部自适应的先验概率分布模型,最后利用马尔科夫链蒙特卡罗采样的贝叶斯推理恢复出图像的小波系数,进而得到重构图像。实验结果表明,DLWT-TDC算法在采样率为50%~90%下可以提高图像的重构性能,与仅利用尺度间相关性的小波树结构的压缩感知重构算法相比,在90%高采样率下的重构性能可提高3dB左右。 相似文献