首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R McKay  D DiMaio 《Nature》1981,289(5800):810-813
  相似文献   

2.
3.
Sun B  Johnson DS  Patel G  Smith BY  Pandey M  Patel SS  Wang MD 《Nature》2011,478(7367):132-135
Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair and recombination. Bacteriophage T7 gene product 4 is a model hexameric helicase that has been observed to use dTTP, but not ATP, to unwind double-stranded (ds)DNA as it translocates from 5' to 3' along single-stranded (ss)DNA. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate. Here we address this question using a single-molecule approach to monitor helicase unwinding. We found that T7 helicase does in fact unwind dsDNA in the presence of ATP and that the unwinding rate is even faster than that with dTTP. However, unwinding traces showed a remarkable sawtooth pattern where processive unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behaviour was not observed with dTTP alone and was greatly reduced when ATP solution was supplemented with a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. We found that T7 helicase binds and hydrolyses ATP and dTTP by competitive kinetics such that the unwinding rate is dictated simply by their respective maximum rates V(max), Michaelis constants K(M) and concentrations. In contrast, processivity does not follow a simple competitive behaviour and shows a cooperative dependence on nucleotide concentrations. This does not agree with an uncoordinated mechanism where each subunit functions independently, but supports a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Our data indicate that only one subunit at a time can accept a nucleotide while other subunits are nucleotide-ligated and thus they interact with the DNA to ensure processivity. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.  相似文献   

4.
The gene A protein of bacteriophage phiX174 has been used in vitro to convert phiX RFI DNA into the relaxed RFII form by nicking the viral strand. The nucleotide sequence at the 3' end of the nick has been determined as -- T G C T C C C C C A A C T T Goh. This sequence gives the exact position of the origin of phiX RF DNA replication.  相似文献   

5.
Lee JB  Hite RK  Hamdan SM  Xie XS  Richardson CC  van Oijen AM 《Nature》2006,439(7076):621-624
A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.  相似文献   

6.
7.
Mutation rates differ among regions of the mammalian genome   总被引:91,自引:0,他引:91  
K H Wolfe  P M Sharp  W H Li 《Nature》1989,337(6204):283-285
In the traditional view of molecular evolution, the rate of point mutation is uniform over the genome of an organism and variation in the rate of nucleotide substitution among DNA regions reflects differential selective constraints. Here we provide evidence for significant variation in mutation rate among regions in the mammalian genome. We show first that substitutions at silent (degenerate) sites in protein-coding genes in mammals seem to be effectively neutral (or nearly so) as they do not occur significantly less frequently than substitutions in pseudogenes. We then show that the rate of silent substitution varies among genes and is correlated with the base composition of genes and their flanking DNA. This implies that the variation in both silent substitution rate and base composition can be attributed to systematic differences in the rate and pattern of mutation over regions of the genome. We propose that the differences arise because mutation patterns vary with the timing of replication of different chromosomal regions in the germline. This hypothesis can account for both the origin of isochores in mammalian genomes and the observation that silent nucleotide substitutions in different mammalian genes do not have the same molecular clock.  相似文献   

8.
Stimulation of protein-directed strand exchange by a DNA helicase   总被引:1,自引:0,他引:1  
T Kodadek  B M Alberts 《Nature》1987,326(6110):312-314
The protein-mediated exchange of strands between a DNA double helix and a homologous DNA single strand involves both synapsis and branch migration, which are two important aspects of any general recombination reaction. Purified DNA-dependent ATPases from Escherichia coli (recA protein), Ustilago (rec 1 protein) and phage T4 (uvsX protein) have been shown to drive both synapsis and branch migration in vitro. The T4 gene 32 protein is a helix-destabilizing protein that greatly stimulates uvsX-protein-catalysed synapsis, and the E. coli SSB (single-strand binding) protein stimulates the analogous recA-protein-mediated reaction to a lesser degree. One suspects that several other proteins also play a role in the strand exchange process. For example, a DNA helicase could in principle accelerate branch migration rates by helping to melt the helix at the branch point. The T4 dda protein is a DNA helicase that is required to move the T4 replication fork past DNA template-bound proteins in vitro. Previously, we have shown that the dda protein binds to a column that contains immobilized T4 uvsX protein. We show here that this helicase specifically stimulates the branch migration reaction that the uvsX protein catalyses as a central part of the genetic recombination process in a T4 bacteriophage-infected cell.  相似文献   

9.
D L Ollis  C Kline  T A Steitz 《Nature》1985,313(6005):818-819
Escherichia coli contains three DNA polymerases that differ in their size, ability to interact with accessory proteins and biological function. Monomeric DNA polymerase I (Pol I) has a relative molecular mass (Mr) of 103,000 (103K) and is involved primarily in the repair of damaged DNA and the processing of Okazaki fragments; polymerase II is of Mr 120K, and polymerase III has a Mr of 140K, is responsible for the replication of the DNA chromosome and is just one of several proteins that are required for replication. DNA polymerases from bacteriophage as well as those of eukaryotic viral and cellular origin also differ with respect to their size and the number of associated proteins that are required for them to function in replication. However, the template-directed copying of DNA is identical in all cases. The crystal structure of the large proteolytic fragment of Pol I shows that it consists of two domains, the larger of which contains a deep crevice whose dimensions are such that it can bind duplex DNA. The T7 polymerase consists of two subunits, the 80K gene 5 protein and the host-encoded 12K thioredoxin of E. coli. We show here that there is an amino acid sequence homology between at least eight polypeptide segments that form the large cleft in the Klenow fragment and polypeptides in T7 DNA polymerase gene 5 protein, suggesting that this domain evolved from a common precursor. The parts of the Pol I and T7 DNA polymerase molecules that bind the DNA substrate appear to share common structural features, and these features may be shared by all of these varied DNA polymerases.  相似文献   

10.
T Q Trinh  R R Sinden 《Nature》1991,352(6335):544-547
When present in single-stranded DNA, palindromic or quasi-palindromic sequences have the potential to form complex secondary structures, including hairpins, which may facilitate interstrand misalignment of direct repeats and be responsible for diverse types of replication-based mutations, including deletions, additions, frameshifts and duplications. In regions of palindromic symmetry, specific deletion events may involve the formation of a hairpin or other DNA secondary structures which can stabilize the misalignment of direct repeats. One model suggests that these deletions occur during DNA replication by slippage of the template strand and misalignment with the progeny strand. The concurrent DNA replication model, involving an asymmetric dimeric DNA polymerase III complex which replicates the leading and lagging strands, has significant implications for mutagenesis. The intermittent looping of the lagging strand template, and the fact that the lagging strand template may contain a region of single-stranded DNA the length of an Okazaki fragment, provides an opportunity for DNA secondary-structure formation and misalignment. Here we report our design of a palindromic fragment to create an 'asymmetric palindromic insert' in the chloramphenicol acetyltransferase gene of plasmid pBR325. The frequency with which the insert was deleted in Escherichia coli depends on the orientation of the gene in the plasmid. Our results suggest that replication-dependent deletion between direct repeats may occur preferentially in the lagging strand.  相似文献   

11.
C O Wilke  J L Wang  C Ofria  R E Lenski  C Adami 《Nature》2001,412(6844):331-333
Darwinian evolution favours genotypes with high replication rates, a process called 'survival of the fittest'. However, knowing the replication rate of each individual genotype may not suffice to predict the eventual survivor, even in an asexual population. According to quasi-species theory, selection favours the cloud of genotypes, interconnected by mutation, whose average replication rate is highest. Here we confirm this prediction using digital organisms that self-replicate, mutate and evolve. Forty pairs of populations were derived from 40 different ancestors in identical selective environments, except that one of each pair experienced a 4-fold higher mutation rate. In 12 cases, the dominant genotype that evolved at the lower mutation rate achieved a replication rate >1.5-fold faster than its counterpart. We allowed each of these disparate pairs to compete across a range of mutation rates. In each case, as mutation rate was increased, the outcome of competition switched to favour the genotype with the lower replication rate. These genotypes, although they occupied lower fitness peaks, were located in flatter regions of the fitness surface and were therefore more robust with respect to mutations.  相似文献   

12.
Stano NM  Jeong YJ  Donmez I  Tummalapalli P  Levin MK  Patel SS 《Nature》2005,435(7040):370-373
Helicases are molecular motors that use the energy of nucleoside 5'-triphosphate (NTP) hydrolysis to translocate along a nucleic acid strand and catalyse reactions such as DNA unwinding. The ring-shaped helicase of bacteriophage T7 translocates along single-stranded (ss)DNA at a speed of 130 bases per second; however, T7 helicase slows down nearly tenfold when unwinding the strands of duplex DNA. Here, we report that T7 DNA polymerase, which is unable to catalyse strand displacement DNA synthesis by itself, can increase the unwinding rate to 114 base pairs per second, bringing the helicase up to similar speeds compared to its translocation along ssDNA. The helicase rate of stimulation depends upon the DNA synthesis rate and does not rely on specific interactions between T7 DNA polymerase and the carboxy-terminal residues of T7 helicase. Efficient duplex DNA synthesis is achieved only by the combined action of the helicase and polymerase. The strand displacement DNA synthesis by the DNA polymerase depends on the unwinding activity of the helicase, which provides ssDNA template. The rapid trapping of the ssDNA bases by the DNA synthesis activity of the polymerase in turn drives the helicase to move forward through duplex DNA at speeds similar to those observed along ssDNA.  相似文献   

13.
DNA mismatch repair ensures genomic integrity on DNA replication. Recognition of a DNA mismatch by a dimeric MutS protein initiates a cascade of reactions and results in repair of the newly synthesized strand; however, details of the molecular mechanism remain controversial. Here we present the crystal structure at 2.2 A of MutS from Escherichia coli bound to a G x T mismatch. The two MutS monomers have different conformations and form a heterodimer at the structural level. Only one monomer recognizes the mismatch specifically and has ADP bound. Mismatch recognition occurs by extensive minor groove interactions causing unusual base pairing and kinking of the DNA. Nonspecific major groove DNA-binding domains from both monomers embrace the DNA in a clamp-like structure. The interleaved nucleotide-binding sites are located far from the DNA. Mutations in human MutS alpha (MSH2/MSH6) that lead to hereditary predisposition for cancer, such as hereditary non-polyposis colorectal cancer, can be mapped to this crystal structure.  相似文献   

14.
T Tsurimoto  T Melendy  B Stillman 《Nature》1990,346(6284):534-539
Enzymatic synthesis of DNA from the simian virus 40 origin of DNA replication has been reconstituted in vitro with eight purified components. DNA polymerase alpha-primase complex first initiates DNA synthesis at the replication origin and continues as the lagging strand polymerase. Subsequently, the DNA polymerase delta complex initiates replication on the leading strand template. Some prokaryotic DNA polymerase complexes can replace the eukaryotic polymerase delta complex. A model for polymerase switching during initiation of DNA replication is presented.  相似文献   

15.
Bruner SD  Norman DP  Verdine GL 《Nature》2000,403(6772):859-866
Spontaneous oxidation of guanine residues in DNA generates 8-oxoguanine (oxoG). By mispairing with adenine during replication, oxoG gives rise to a G x C --> T x A transversion, a frequent somatic mutation in human cancers. The dedicated repair pathway for oxoG centres on 8-oxoguanine DNA glycosylase (hOGG1), an enzyme that recognizes oxoG x C base pairs, catalysing expulsion of the oxoG and cleavage of the DNA backbone. Here we report the X-ray structure of the catalytic core of hOGG1 bound to oxoG x C-containing DNA at 2.1 A resolution. The structure reveals the mechanistic basis for the recognition and catalytic excision of DNA damage by hOGG1 and by other members of the enzyme superfamily to which it belongs. The structure also provides a rationale for the biochemical effects of inactivating mutations and polymorphisms in hOGG1. One known mutation, R154H, converts hOGG1 to a promutator by relaxing the specificity of the enzyme for the base opposite oxoG.  相似文献   

16.
W N Hunter  T Brown  N N Anand  O Kennard 《Nature》1986,320(6062):552-555
Mutational pathways rely on introducing changes in the DNA double helix. This may be achieved by the incorporation of a noncomplementary base on replication or during genetic recombination, leading to substitution mutation. In vivo studies have shown that most combinations of base-pair mismatches can be accommodated in the DNA double helix, albeit with varying efficiencies. Fidelity of replication requires the recognition and excision of mismatched bases by proofreading enzymes and post-replicative mismatch repair systems. Rates of excision vary with the type of mismatch and there is some evidence that these are influenced by the nature of the neighbouring sequences. However, there is little experimental information about the molecular structure of mismatches and their effect on the DNA double helix. We have recently determined the crystal structures of several DNA fragments with guanine X thymine and adenine X guanine mismatches in a full turn of a B-DNA helix and now report the nature of the base pairing between adenine and cytosine in an isomorphous fragment. The base pair found in the present study is novel and we believe has not previously been demonstrated. Our results suggest that the enzymatic recognition of mismatches is likely to occur at the level of the base pairs and that the efficiency of repair can be correlated with structural features.  相似文献   

17.
The molecular clock runs more slowly in man than in apes and monkeys   总被引:17,自引:0,他引:17  
W H Li  M Tanimura 《Nature》1987,326(6108):93-96
The molecular clock hypothesis postulates that the rate of molecular evolution is approximately constant over time. Although this hypothesis has been highly controversial in the past, it is now widely accepted. The assumption of rate constancy has often been taken as a basis for reconstructing the phylogenetic relationships among organisms or genes and for dating evolutionary events. Further, it has been taken as strong support for the neutral mutation hypothesis, which postulates that the majority of molecular changes in evolution are due to neutral or nearly neutral mutations. For these reasons, the validity of the rate constancy assumption is a vital issue in molecular evolution. Recent studies using DNA sequence data have raised serious doubts about the hypothesis. These studies provided support for the suggestion made from immunological distance and protein sequence data that a rate slowdown has occurred in hominoid evolution, and showed, in agreement with DNA hybridization studies, that rates of nucleotide substitution are significantly higher in rodents than in man. Here, rates of nucleotide substitution in rodents are estimated to be 4-10 times higher than those in higher primates and 2-4 times higher than those in artiodactyls. Further, this study provides strong evidence for the hominoid slowdown hypothesis and suggests a further rate-slowdown in hominoid evolution. Our results suggest that the variation in rate among mammals is primarily due to differences in generation time rather than changes in DNA repair mechanisms. We also propose a method for estimating the divergence times between species when the rate constancy assumption is violated.  相似文献   

18.
D Lee  H Sohn  G V Kalpana  J Choe 《Nature》1999,399(6735):487-491
  相似文献   

19.
Formation of a stable triplex from a single DNA strand   总被引:17,自引:0,他引:17  
V Sklenár  J Feigon 《Nature》1990,345(6278):836-838
Homopurine.homopyrimidine DNA sequences have been shown to form triple-stranded structures readily under appropriate conditions. Interest in DNA triplexes arises from potential applications of intermolecular triplexes as antisense inhibitors of gene expression and from the possibility that intramolecular triplexes may have a role in gene expression and recombination. We recently presented NMR evidence for triplex formation from the DNA oligonucleotides d(GA)4 and d(TC)4, which showed unambiguously that the second pyrimidine strand is Hoogsteen base paired and the cytosines are protonated at N3 as required. To obtain a more well defined triplex, and to provide a model for in vivo triplex structures, we have designed and synthesized a 28-base DNA oligomer with a sequence that could potentially fold to form a triplex containing both T.A.T and C+.G.C triplets. Our NMR results indicate that the conformation at pH 5.5 is an intramolecular triplex and that a significant amount of triplex remains even at pH 8.0.  相似文献   

20.
Smith CE  Llorente B  Symington LS 《Nature》2007,447(7140):102-105
DNA double-strand breaks (DSBs) are potentially lethal lesions that arise spontaneously during normal cellular metabolism, as a consequence of environmental genotoxins or radiation, or during programmed recombination processes. Repair of DSBs by homologous recombination generally occurs by gene conversion resulting from transfer of information from an intact donor duplex to both ends of the break site of the broken chromosome. In mitotic cells, gene conversion is rarely associated with reciprocal exchange and thus limits loss of heterozygosity for markers downstream of the site of repair and restricts potentially deleterious chromosome rearrangements. DSBs that arise by replication fork collapse or by erosion of uncapped telomeres have only one free end and are thought to repair by strand invasion into a homologous duplex DNA followed by replication to the chromosome end (break-induced replication, BIR). BIR from one of the two ends of a DSB would result in loss of heterozygosity, suggesting that BIR is suppressed when DSBs have two ends so that repair occurs by the more conservative gene conversion mechanism. Here we show that BIR can occur by several rounds of strand invasion, DNA synthesis and dissociation. We further show that chromosome rearrangements can occur during BIR if dissociation and reinvasion occur within dispersed repeated sequences. This dynamic process could function to promote gene conversion by capture of the displaced invading strand at two-ended DSBs to prevent BIR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号