首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.  相似文献   

2.
Rappuoli R  Aderem A 《Nature》2011,473(7348):463-469
Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.  相似文献   

3.
Snow RW  Guerra CA  Noor AM  Myint HY  Hay SI 《Nature》2005,434(7030):214-217
Interest in mapping the global distribution of malaria is motivated by a need to define populations at risk for appropriate resource allocation and to provide a robust framework for evaluating its global economic impact. Comparison of older and more recent malaria maps shows how the disease has been geographically restricted, but it remains entrenched in poor areas of the world with climates suitable for transmission. Here we provide an empirical approach to estimating the number of clinical events caused by Plasmodium falciparum worldwide, by using a combination of epidemiological, geographical and demographic data. We estimate that there were 515 (range 300-660) million episodes of clinical P. falciparum malaria in 2002. These global estimates are up to 50% higher than those reported by the World Health Organization (WHO) and 200% higher for areas outside Africa, reflecting the WHO's reliance upon passive national reporting for these countries. Without an informed understanding of the cartography of malaria risk, the global extent of clinical disease caused by P. falciparum will continue to be underestimated.  相似文献   

4.
Nahlen BL  Korenromp EL  Miller JM  Shibuya K 《Nature》2005,437(7056):E3; discussion E4-E3; discussion E5
Estimates of the disease burden caused by malaria are crucial for informing malaria control programmes. Snow and colleagues claim that their estimate of 515 million cases of malaria caused by Plasmodium falciparum globally is up to 50% higher than that reported by the World Health Organization (WHO), and 200% higher for areas outside Africa. However, this comparison refers to the WHO's estimates from 1990 and 1998, and not to the range of 300 million to 500 million that the WHO has used since 2000 (ref. 2). Both groups agree that the burden of malaria disease outside Africa, especially in South Asia, is greater than was estimated in the 1990s.  相似文献   

5.
The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.  相似文献   

6.
Satellite imagery in the study and forecast of malaria   总被引:15,自引:0,他引:15  
Rogers DJ  Randolph SE  Snow RW  Hay SI 《Nature》2002,415(6872):710-715
More than 30 years ago, human beings looked back from the Moon to see the magnificent spectacle of Earth-rise. The technology that put us into space has since been used to assess the damage we are doing to our natural environment and is now being harnessed to monitor and predict diseases through space and time. Satellite sensor data promise the development of early-warning systems for diseases such as malaria, which kills between 1 and 2 million people each year.  相似文献   

7.
Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria   总被引:20,自引:0,他引:20  
Schofield L  Hewitt MC  Evans K  Siomos MA  Seeberger PH 《Nature》2002,418(6899):785-789
The malaria parasite Plasmodium falciparum infects 5-10% of the world's population and kills two million people annually. Fatalities are thought to result in part from pathological reactions initiated by a malarial toxin. Glycosylphosphatidylinositol (GPI) originating from the parasite has the properties predicted of a toxin; however, a requirement for toxins in general and GPI in particular in malarial pathogenesis and fatality remains unproven. As anti-toxic vaccines can be highly effective public health tools, we sought to determine whether anti-GPI vaccination could prevent pathology and fatalities in the Plasmodium berghei/rodent model of severe malaria. The P. falciparum GPI glycan of the sequence NH(2)-CH(2)-CH(2)-PO(4)-(Man alpha 1-2)6Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcNH(2)alpha 1-6myo-inositol-1,2-cyclic-phosphate was chemically synthesized, conjugated to carriers, and used to immunize mice. Recipients were substantially protected against malarial acidosis, pulmonary oedema, cerebral syndrome and fatality. Anti-GPI antibodies neutralized pro-inflammatory activity by P. falciparum in vitro. Thus, we show that GPI is a significant pro-inflammatory endotoxin of parasitic origin, and that several disease parameters in malarious mice are toxin-dependent. GPI may contribute to pathogenesis and fatalities in humans. Synthetic GPI is therefore a prototype carbohydrate anti-toxic vaccine against malaria.  相似文献   

8.
The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.  相似文献   

9.
The mosquito-borne malaria parasite Plasmodium falciparum kills an estimated 0.7-2.7 million people every year, primarily children in sub-Saharan Africa. Without effective interventions, a variety of factors-including the spread of parasites resistant to antimalarial drugs and the increasing insecticide resistance of mosquitoes-may cause the number of malaria cases to double over the next two decades. To stimulate basic research and facilitate the development of new drugs and vaccines, the genome of Plasmodium falciparum clone 3D7 has been sequenced using a chromosome-by-chromosome shotgun strategy. We report here the nucleotide sequences of chromosomes 10, 11 and 14, and a re-analysis of the chromosome 2 sequence. These chromosomes represent about 35% of the 23-megabase P. falciparum genome.  相似文献   

10.
Winzeler EA 《Nature》2008,455(7214):751-756
For many pathogens the availability of genome sequence, permitting genome-dependent methods of research, can partially substitute for powerful forward genetic methods (genome-independent) that have advanced model organism research for decades. In 2002 the genome sequence of Plasmodium falciparum, the parasite causing the most severe type of human malaria, was completed, eliminating many of the barriers to performing state-of-the-art molecular biological research on malaria parasites. Although new, licensed therapies may not yet have resulted from genome-dependent experiments, they have produced a wealth of new observations about the basic biology of malaria parasites, and it is likely that these will eventually lead to new therapeutic approaches. This review will focus on the basic research discoveries that have depended, in part, on the availability of the Plasmodium genome sequences.  相似文献   

11.
I A Hope  R Hall  D L Simmons  J E Hyde  J G Scaife 《Nature》1984,308(5955):191-194
Malaria parasites (Plasmodium spp.) show a complex pattern of development in the mammalian host and many studies support the view that the surface of the sporozoite, injected by the mosquito, has no antigens in common with the erythrocytic stage of development. For example, immunization with the erythrocytic parasites generates antisera with negligible titre by indirect immunofluorescence to the sporozoite surface. Although monoclonal antibodies prepared against erythrocytic stages were reported to show cross-reaction to the sporozoite stage, this appeared to be due to cytoplasmic antigens exposed by the method of sporozoite preparation, and in Plasmodium knowlesi, a cDNA clone coding for the circumsporozoite antigen, the major protein of the sporozoite surface, showed no hydridization to mRNA isolated from the erythrocytic stages. Here, however, we present evidence for an antigenic determinant shared by the sporozoite surface and the erythrocytic stages of the human malaria parasite, P. falciparum. Moreover, our studies show that the antigen(s) elicit a strong immune response in man.  相似文献   

12.
Hyman RW  Fung E  Conway A  Kurdi O  Mao J  Miranda M  Nakao B  Rowley D  Tamaki T  Wang F  Davis RW 《Nature》2002,419(6906):534-537
The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people every year. To stimulate basic research on the disease, and to promote the development of effective drugs and vaccines against the parasite, the complete genome of P. falciparum clone 3D7 has been sequenced, using a chromosome-by-chromosome shotgun strategy. Here we report the nucleotide sequence of the third largest of the parasite's 14 chromosomes, chromosome 12, which comprises about 10% of the 23-megabase genome. As the most (A + T)-rich (80.6%) genome sequenced to date, the P. falciparum genome presented severe problems during the assembly of primary sequence reads. We discuss the methodology that yielded a finished and fully contiguous sequence for chromosome 12. The biological implications of the sequence data are more thoroughly discussed in an accompanying Article (ref. 3).  相似文献   

13.
Malaria in 2002   总被引:9,自引:0,他引:9  
Greenwood B  Mutabingwa T 《Nature》2002,415(6872):670-672
The burden of malaria is increasing, especially in sub-Saharan Africa, because of drug and insecticide resistance and social and environmental changes. Thus, there is an urgent need for vaccines, new drugs and insecticides. Parasite, mosquito and human genome projects are helping in the search for new control tools and international donors are developing new funding mechanisms that could make them available to poor countries. But these new tools will achieve their maximum impact only if additional resources are deployed to strengthen malaria research and control communities in countries where the new tools will be used.  相似文献   

14.
Ito J  Ghosh A  Moreira LA  Wimmer EA  Jacobs-Lorena M 《Nature》2002,417(6887):452-455
Malaria is estimated to cause 0.7 to 2.7 million deaths per year, but the actual figures could be substantially higher owing to under-reporting and difficulties in diagnosis. If no new control measures are developed, the malaria death toll is projected to double in the next 20 years. Efforts to control the disease are hampered by drug resistance in the Plasmodium parasites, insecticide resistance in mosquitoes, and the lack of an effective vaccine. Because mosquitoes are obligatory vectors for malaria transmission, the spread of malaria could be curtailed by rendering them incapable of transmitting parasites. Many of the tools required for the genetic manipulation of mosquito competence for malaria transmission have been developed. Foreign genes can now be introduced into the germ line of both culicine and anopheline mosquitoes, and these transgenes can be expressed in a tissue-specific manner. Here we report on the use of such tools to generate transgenic mosquitoes that express antiparasitic genes in their midgut epithelium, thus rendering them inefficient vectors for the disease. These findings have significant implications for the development of new strategies for malaria control.  相似文献   

15.
A F Slater  A Cerami 《Nature》1992,355(6356):167-169
The incidence of human malaria has increased during the past 20 years; 270 million people are now estimated to be infected with the parasite. An important contribution to this increase has been the appearance of malaria organisms resistant to quinoline-containing antimalarials such as chloroquine and quinine. These drugs accumulate in the acid food vacuoles of the intraerythrocytic-stage malaria parasite, although the mechanism of their specific toxicity in this organelle is uncertain. The primary function of the food vacuole is the proteolysis of ingested red cell haemoglobin to provide the growing parasite with essential amino acids. Haemoglobin breakdown in the food vacuole releases haem, which if soluble can damage biological membranes and inhibit a variety of enzymes. Rather than degrading or excreting the haem, the parasite has evolved a novel pathway for its detoxification by incorporating it into an insoluble crystalline material called haemozoin or malaria pigment. These crystals form in the food vacuole of the parasite concomitant with haemoglobin degradation, where they remain until the infected red cell bursts. The structure of haemozoin comprises a polymer of haems linked between the central ferric ion of one haem and a carboxylate side-group oxygen of another. This structure does not form spontaneously from either free haem or haemoglobin under physiological conditions, and the biochemistry of its formation is unclear. Here we report the identification and characterization of a haem polymerase enzyme activity from extracts of Plasmodium falciparum trophozoites, and show that this enzyme is inhibited by quinoline-containing drugs such as chloroquine and quinine. This provides a possible explanation for the highly stage-specific antimalarial properties of these drugs.  相似文献   

16.
土地利用方式是影响碳排放的主要原因,低碳排放已成为土地利用调控的新课题。为了分析不同土地利用方式的碳排放效应,本文以重庆市为例,分析直辖以来重庆市主要土地利用方式的碳排放,并对重庆市的碳排放进行预测。结果表明,1997-2008年,由于土地利用的变化,重庆市碳排放从1 158.29万t增加到2 892.75万t,其中建设用地和耕地是主要碳源,建设用地年碳排放达1 214.92~2 987.29万t,排放强度为2.49~5.04 kg/(m2a),耕地年碳排放从126.3万t降为111.13万t;林地为主要的碳汇,由于林地面积持续扩大,林地的年碳吸收量由182.43万t增加到205.17万t。对重庆市2020年土地利用规划下的碳排放预测结果显示,2020年重庆市单位GDP碳排放比2005年减少43.99%,但碳排放总量显著增加,为10 381.19万t,因此面临的减碳任务非常严峻。  相似文献   

17.
Total P & B production in Mainland China has been reported to be 37.8 million metric tons for the year 2002. A goal of 50-60 million metric tons of total P & B production has been set for the year 2010. By that time, domestic virgin woodpulp production will be doubled, with pulpwood supply from plantations in the country and supplemented by imported woodchips and pulpwoods. Imported market woodpulp will still play an important role in the Chinese industry. Non-wood fibers will stay as an indispensable sustaining fibers source for the growth of the Chinese industry. Increases in reed, bamboo and wheat straw pulping capacities will be expected within the years. Efforts will have to be taken for the promotion of domestic wastepaper recycling, hoping to have the recycling rate upgraded to 35-38% bythe end of this decade. Aside from the intensified domestic wastepaper recovery, a 6-8% average annual increase in wastepaper importation will be expected in the foreseeable future.  相似文献   

18.
人口规模对于未来国家和地区经济的发展具有重要的意义.本文综合运用GM(1,1)灰色模型、Logis-tic模型、Malthus人口模型、对数模型四种数学模型,对天水市2020年—2030年人口规模进行预测,旨在为政府有关部门制定社会经济发展规划提供参考依据.结果表明:未来20年内,天水市总人口将继续处于稳定增长状态,年平均人口增长率8.01‰,到2020年,天水市总人口将达到402.71万,到2030年,总人口将达到437.49万人.  相似文献   

19.
The human Y chromosome, transmitted clonally through males, contains far fewer genes than the sexually recombining autosome from which it evolved. The enormity of this evolutionary decline has led to predictions that the Y chromosome will be completely bereft of functional genes within ten million years. Although recent evidence of gene conversion within massive Y-linked palindromes runs counter to this hypothesis, most unique Y-linked genes are not situated in palindromes and have no gene conversion partners. The 'impending demise' hypothesis thus rests on understanding the degree of conservation of these genes. Here we find, by systematically comparing the DNA sequences of unique, Y-linked genes in chimpanzee and human, which diverged about six million years ago, evidence that in the human lineage, all such genes were conserved through purifying selection. In the chimpanzee lineage, by contrast, several genes have sustained inactivating mutations. Gene decay in the chimpanzee lineage might be a consequence of positive selection focused elsewhere on the Y chromosome and driven by sperm competition.  相似文献   

20.
本文分析了我国东、中、西三个经济地带城镇的发展条件及现状结构,结合国家今后的战略部署,对2000年三个地带的城镇数量及城镇体系结构作了预测。认为东部地带届时5万人以上的城市将达287座,5万人以下的城镇将达4000座,城镇总人口13500万;中部地带大于5万人的城市228座,5万人以下的城镇3000~3500座,城镇总人口13280万;西部地带大于5万人的城市117座,加上建制镇人口,城镇总人口将达6228万左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号