首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
首先用水热法制备了Fe3O4纳米球,然后以制备的磁性Fe3O4纳米粒子为磁核,在高温高压反应釜中与葡萄糖反应,使其表面包覆一层聚糖,利用聚糖的还原性,让包覆后的粒子与AgNO3反应,制备出Fe3O4/Ag纳米复合粒子。用透射电镜(TEM)、X射线衍射仪(XRD)对所制备的材料的形貌和结构进行了表征。通过抑菌实验的测定,结果表明Fe3O4/Ag复合材料具有良好的抑菌活性。  相似文献   

2.
制备了壳聚糖、SiO2改性Fe3O4磁性复合材料,并用于亚甲基蓝的吸附研究.利用FT-IR,XRD,BET和VSM等手段表征了材料的结构和形貌.结果表明,壳聚糖、SiO2成功修饰在Fe3O4磁性材料表面,新制备磁性复合材料具有较大的比表面积和多孔结构,且饱和磁化强度为85.84 emu/g,磁响应明显;新材料对亚甲基蓝的吸附动力学数据与准二级动力学方程拟合较好,等温吸附过程符合Freundlich等温模型.  相似文献   

3.
为了简单、高效、快速地检测儿茶酚胺类物质,该文采用水热法制备了硼酸功能化磁性共价有机框架材料(B(OH)2@MATP@Fe3O4),并将其应用于儿茶酚胺类物质的富集,采用傅里叶红外光谱仪(FT-IR)、X-射线衍射仪(XRD)和热重分析(TG)等方法对B(OH)2@MATP@Fe3O4材料的样貌进行表征。以儿茶酚胺类物质去甲肾上腺素(NE)、肾上腺素(E)和多巴胺(DA)为模型物质对B(OH)2@MATP@Fe3O4进行萃取,结合高效液相色谱法(HPLC)进行检测和分析。结果表明,B(OH)2@MATP@Fe3O4材料对NE、E、DA都能显示出比较好的富集效果。建立的B(OH)2@MATP@Fe3O4磁性粒子分离富集-高效液相色谱法对儿茶酚胺类物质具有一定的可操...  相似文献   

4.
以三聚氰胺和铁盐为原料制备磁性g-C3N4-Fe3O4复合纳米材料, 并探究不同反应条件对其光催化降解3 种喹诺酮类抗生素(洛美沙星LOM、氧氟沙星OLF和环丙沙星CIP)的影响。光催化反应的优化条件如下: 抗生素初始浓度为3.0 mg/L, g-C3N4-Fe3O4复合纳米材料初始剂量为 0.60 g/L, 温度为25℃, pH=7。在优化条件下, 洛美沙星、氧氟沙星和环丙沙星光照100分钟的降解率分别为83.6%, 60.9%和99.0%。XRD 和UV-vis分析表明, 石墨相g-C3N4与 磁性Fe3O4之间存在强烈的相互作用, 导致生成更多光生电子–空穴对, 增强复合纳米材料的光催化活性。重复循环利用5次后, 磁性g-C3N4-Fe3O4复合纳米材料的回收率大于90%, 光催化降解效率保持在60%以上。  相似文献   

5.
水体中残留的H2O2进入人体后会转化为含氧自由基,进而对机体造成氧化损伤并引发病变,因此实现水体中的H2O2检测具有重要意义.制备了具有较高类过氧化物酶活性的MoS2-Fe3O4复合物水凝胶,并构建比色传感平台实现了水体中H2O2的灵敏检测.在H2O2-TMB显色体系中,Fe3O4与MoS2纳米片复合协同催化H2O2产生含氧自由基,水凝胶三维结构可有效抑制MoS2-Fe3O4堆叠,促进活性位点的暴露,进一步提高对H2O2的催化能力.动力学常数显示,MoS2-Fe3O4...  相似文献   

6.
首先采用工艺较为简单的溶剂热法制备Fe3O4材料,对其进一步修饰后可得到Fe3O4/GO复合材料,最后通过化学共沉淀法制备得到具有磁性的纳米材料Fe3O4/GO/ZnO,并将该材料用于盐酸土霉素的吸附研究中。考察了盐酸土霉素的起始浓度、pH以及吸附剂的用量等因素对盐酸土霉素吸附效果的影响,还考察了纳米材料的再生循环次数及最大吸附量。结果表明:盐酸土霉素起始浓度为18 mg/L,pH值为3,材料用量为0.003 2 g等最佳条件下,该材料的最大吸附量达到191.93 mg/g,前再生3次吸附量保持在150 mg/g左右,故制备的Fe3O4/GO/ZnO磁性纳米材料对盐酸土霉素具有较好的吸附能力和稳定性。  相似文献   

7.
利用溶剂热法制备纳米Fe3O4,并将其分散在正硅酸乙酯(TEOS)水解液中,在表面沉积一层SiO2.用甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)对SiO2-Fe3O4表面改性,得到MPS-SiO2-Fe3O4.将甲基丙烯酸(MAA)与己烯雌酚(DES)以摩尔比4∶1加入乙腈溶剂中,进行12 h自组装,再加入MPS-SiO2-Fe3O4、乙二醇二甲基丙烯酸酯(EGDMA)和偶氮二异丁腈(AIBN),进行超声分散30 min, 65℃条件下机械搅拌,反应24 h,制得DES磁性分子印迹聚合物(MMIP).采用透射电镜、振动样品磁强计和吸附试验等方法进行表征分析.结果表明:MMIP的饱和磁化强度为268 kA/m,无磁滞现象,矫顽力为0,表现出超顺磁性,在磁铁作用下17 s就可与溶液分离;室温下,MMIP对DES的静态最大吸附量为7....  相似文献   

8.
Fe3O4磁性纳米粒子是目前应用最为广泛的磁性纳米材料,相比于其他材料而言,其制备过程简单、化学稳定性好、储存方便、成本低廉,且容易实现磁性分离。Fe3O4磁性纳米粒子表面容易被修饰大量的含氧官能团,使其易于和其他基团连接,因此具有极大的功能化潜力。经过功能化的Fe3O4磁性纳米粒子具有很高的饱和磁化率以及极好的超顺磁性,从而被广泛用作水体处理过程中吸附剂、催化剂等的基质材料。本文综述了近年来具有代表性的功能化Fe3O4磁性纳米材料,列举了一系列功能化Fe3O4磁性纳米材料的制备方法以及它们在去除水体中的有机物、重金属离子、染料、抗生素等污染物方面的应用,并对磁性纳米材料在实际应用中面临的问题进行了总结和分析。  相似文献   

9.
以乙二醇为溶剂,通过温和的溶剂热法制备了具有不同颗粒尺寸大小的Fe3O4微米粒子.研究发现,通过调节反应体系中水、聚乙二醇-20000和铁离子的浓度,能有效控制Fe3O4的成核与生长,从而能实现对Fe3O4在较大颗粒尺寸范围内的有效调控.另外,相比小尺寸的Fe3O4,较大颗粒尺寸的超顺磁性粒子表现出更优良的磁性回收性能.由此可见,Fe3O4颗粒尺寸的有效调控对拓展其在纳米材料磁性回收中的应用具有非常重要的意义  相似文献   

10.
Sch/Fe3O4/ZSM-5复合光催化剂通过化学浸渍法制备,并用于活化H2O2去除甲基橙.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)、X射线衍射分析(XRD)、傅里叶变换红外光谱(FT-IR)以及比表面积分析(BET)对Sch/Fe3O4/ZSM-5进行形貌和结构表征.考察了溶液初始pH、H2O2浓度、Sch/Fe3O4/ZSM-5投加量对UV/Sch/Fe3O4/ZSM-5/H2O2体系去除甲基橙的影响.结果表明,当甲基橙初始质量浓度为10 mg·L-1、初始pH为3、H2O2浓度为3 mmol·L-1、Sch/Fe3O...  相似文献   

11.
使用动态反应釜制备得到磁性粒子,与静态反应釜相比单次制备量提高20倍;通过扫描电子显微镜(SEM)、傅立叶红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对产物进行表征,证明获得了粒径200 nm左右的单分散Fe3O4粒子,并具有超顺磁性;对其表面进行SiO2包覆,获得具有良好分散性的Fe3O4@SiO2粒子。研究发现Fe3O4@SiO2对DNA提取具有可重复利用性,并且质粒DNA吸附到Fe3O4@SiO2上后可直接加入聚合酶链式反应(PCR)体系作为扩增模板。  相似文献   

12.
采用溶剂热法在200℃制备出形貌均一、分散性较好、平均粒径约200nm的磁性Fe3O4微球。该方法合成的Fe3O4微球在Fenton降解二甲酚橙方面效果显著,降解率达到90%以上。由于Fe3O4微球具有强磁性,故反应后催化剂可直接通过磁铁吸引的方式回收,且回收率可达90%以上。回收后的催化剂只需简单超声清洗便可再生并循环利用,催化剂再生后的降解效果与其一次催化的效果相近。  相似文献   

13.
磁性高分子微球是利用微胶囊化方法,使有机高分子与无机磁性粒子Fe3O4结合起来形成的具有磁响应性的高分子微球.对以聚(甲基丙烯酸-co-丙烯酰胺)(P(MAA-co-AAm))为高分子基材、四氧化三体(Fe3O4)为磁性内核通过化学方法制备的 P(MAA-co-AAm)/Fe3O4磁性复合微球性能进行了表征.扫描电镜(SEM)照片显示,复合微球呈现明显的交联结构特征,分散性较好.将茶碱负载到P(MAA-co-AAm)/Fe3O4磁性交联复合微球上,对其药物释放情况研究表明,在pH值为7.4的碱性缓冲溶液及去离子水中茶碱释放速率较快,在8 h左右达到释放平衡; 而在pH值为1.4的酸性缓冲溶液中,茶碱的释放缓慢,表明P(MAA-co-AAm)/Fe3O4磁性复合微球有很好的pH值响应性.因此,载药交联微球在酸性胃液和碱性肠道液中能够自动调节药物释放速率,具有靶向药物释放效果,P(MAA-co-AAm)/Fe3O4交联磁性微球可做为靶向药物载体.  相似文献   

14.
采用溶胶-凝胶表面包覆法制备了纳米Fe2O3-Al2 O3复合材料, 利用X射线衍射和透射电镜对样品的物相、 粒度和形貌进行了研 究. 结果表明, α-Fe2O3掺杂降低了Al2O3相变温度, 在900 ℃可以得到稳定的α-Al2O3相.  相似文献   

15.
以煤矸石为原料,制备出磁性煤矸石地质聚合物(Fe3O4-CGGP),研究了其类芬顿氧化降解苯酚的性能和机制。表征显示,粒径为10~20 nm的Fe3O4均匀分散在煤矸石地质聚合物(CGGP)表面形成Fe3O4-CGGP,Fe3O4-CGGP的饱和磁化强度达到35.68 emu/g,这表明Fe3O4-CGGP具有良好的催化活性和磁响应性能。将其应用于降解苯酚废水,实验探讨了pH值、催化剂投加量、H2O2投加量以及苯酚初始浓度等条件对苯酚降解过程的影响。实验表明:反应最适宜pH值为3.5,催化剂最佳投加量为0.5 g/L,H2O2最佳投加量为10 mmol/L,在最优条件下60 min对苯酚去除率可达到100%.自由基淬灭实验认为在Fe3O4-...  相似文献   

16.
先用溶液共混法获得Fe3O4纳米颗粒与氧化石墨烯(GO)混合溶液, 再通过阶梯热还原过程(从室温逐渐升至160 ℃)制备Fe3O4和还原氧化石墨烯(rGO)复合膜, 并用X射线衍射仪、 Fourier变换红外光谱和扫描电子显微镜表征不同Fe3O4质量分数的Fe3O4/rGO复合膜的结构和形貌, 用矢量网络分析仪测试复合膜的电磁参数. 实验结果表明, 当Fe3O4质量分数为40%时, 复合膜的吸波效能为17.30 dB, 频率为10.72 GHz, 厚度为2 mm, 低于-10 dB[KG*8]的有效吸收带宽为3.28 GHz.  相似文献   

17.
先用溶液共混法获得Fe3O4纳米颗粒与氧化石墨烯(GO)混合溶液, 再通过阶梯热还原过程(从室温逐渐升至160 ℃)制备Fe3O4和还原氧化石墨烯(rGO)复合膜, 并用X射线衍射仪、 Fourier变换红外光谱和扫描电子显微镜表征不同Fe3O4质量分数的Fe3O4/rGO复合膜的结构和形貌, 用矢量网络分析仪测试复合膜的电磁参数. 实验结果表明, 当Fe3O4质量分数为40%时, 复合膜的吸波效能为17.30 dB, 频率为10.72 GHz, 厚度为2 mm, 低于-10 dB[KG*8]的有效吸收带宽为3.28 GHz.  相似文献   

18.
通过反相微乳液法制备四氧化三铁纳米颗粒(Fe3O4 NPs),并用硅烷偶联剂KH570对其改性,以期在Fe3O4 NPs表面引入C==C双键,再利用引入的C==C双键与三硫代十二烷酸-2-氰基异丙酯(RAFT试剂)进行反应,得到RAFT试剂化的Fe3O4 NPs(Fe3O4-g-KH570-RAFT NPs),并对不同阶段的Fe3O4 NPs产物的结构与形貌等进行表征.研究中以RAFT试剂接枝率(GrRAFT)为指标,考察了反应时间等工艺条件对GrRAFT的影响.结果表明:制备的Fe3O4-g-KH570-RAFT NPs的平均粒径为10.4 nm,当反应时间为14 h,反应温度为65 ℃,nKH570/nRAFT为1/2时,接枝率GrRAFT最高达到79.34%.  相似文献   

19.
【目的】一锅反应中将天然酶的高选择性与纳米酶的高稳定性相结合,已成为一种提高生物催化级联多样性/复杂性和多酶系统稳定性的理想解决方案。【方法】设计合成了一种离子型磁性Fe3O4@EB-COFs材料,在静电作用诱导下制备了葡萄糖氧化酶(GOx)-磁性共价有机框架材料(GOx/Fe3O4@EB-COFs)。【结果】Fe3O4@EB-COFs扮演了纳米酶与载体材料的角色,且所得复合材料可用于葡萄糖浓度的比色测定。酸性条件下,GOx/Fe3O4@EB-COFs展现出极好的催化葡萄糖氧化与2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)氧化的级联反应。动力学研究表明,反应遵循Lineweaver-Burk方程,说明构建纳米酶与天然酶的级联反应时仍呈现了生物催化的特点。在磁性Fe3O4的加持下,GOx/Fe3O4@EB-COF...  相似文献   

20.
针对锂硫电池中硫正极所面临的导电性差、体积膨胀、多硫化物穿梭和制备成本高等问题,利用绿色且低成本的重金属离子絮凝剂吸附金属离子来制备Fe/Fe3O4-C硫正极载体材料。形貌和结构分析表明,复合材料的三维碳结构上有Fe和Fe3O4均匀分布。负载硫后得到的Fe/Fe3O4-C-S电极具有优异的电化学反应动力学,在0.1C、0.2C、0.5C、1.0C倍率下分别表现出高达908、640、524、438 mAh·g-1的比容量,在0.1C倍率下循环100圈后依然能够保持62.9%的初始容量。由此可见,Fe/Fe3O4-C复合材料中的三维碳结构既能提高导电性,也能缓解硫的体积膨胀,而Fe/Fe3O4双相催化剂可以高效地吸附多硫化物并促进其转化,从而抑制了穿梭效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号